Identification and characterization of a chondroitin synthase from Avibacterium paragallinarum

  • Ting-Ting Wang
  • Chen-Ye Zhu
  • Shuang Zheng
  • Cai-Cai Meng
  • Tian-Tian Wang
  • Dan-Hua Meng
  • Yi-Jun Li
  • Hao-Miao Zhu
  • Feng-Shan Wang
  • Ju-Zheng Sheng
Biotechnologically relevant enzymes and proteins
  • 133 Downloads

Abstract

Avibacterium paragallinarum is a Gram-negative bacterium that causes infectious coryza in chicken. It was reported that the capsule polysaccharides extracted from Av. paragallinarum genotype A contained chondroitin. Chondroitin synthase of Av. paragallinarum (ApCS) encoded by one gene within the presumed capsule biosynthesis gene cluster exhibited considerable homology to identified bacterial chondroitin synthases. Herein, we report the identification and characterization of ApCS. This enzyme indeed displays chondroitin synthase activity involved in the biosynthesis of the capsule. ApCS is a bifunctional protein catalyzing the elongation of the chondroitin chain by alternatively transferring the glucuronic acid (GlcA) and N-acetyl-D-galactosamine (GalNAc) residues from their nucleotide forms to the non-reducing ends of the saccharide chains. GlcA with a para-nitrophenyl group (pNP) could serve as the acceptor for ApCS; this enzyme shows a stringent donor tolerance when the acceptor is as small as this monosaccharide. Then, UDP-GalNAc and GlcA-pNP were injected sequentially through the chip-immobilized chondroitin synthases, and the surface plasmon resonance data demonstrated that the up-regulated extent caused by the binding of the donor is one possibly essential factor in successful polymerization reaction. This conclusion will, therefore, enhance the understanding of the mode of action of glycosyltransferase. Surprisingly, high activity at near-zero temperature as well as weak temperature dependence of this novel bacterial chondroitin synthase indicate that ApCS was a cold-active enzyme. From all accounts, ApCS becomes the fourth known bacterial chondroitin synthase, and the potential applications in artificial chondroitin sulfate and glycosaminoglycan synthetic approaches make it an attractive glycosyltransferase for further investigation.

Keywords

Chondroitin sulfate Avibacterium paragallinarum Chondroitin synthase Substrate specificity Cold-active enzyme 

Notes

Authors’ contributions

JS designed and coordinated the work. TW carried out the experiments. TW and CZ carried out the HPLC analysis. DM, YL, and HZ carried out the donor and acceptor experiments. SZ conducted the MS analysis. TW and CM conducted the NMR analysis. Tian-Tian Wang purified KfoC. JS and TW wrote the manuscript. All authors have read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_8926_MOESM1_ESM.pdf (279 kb)
ESM 1 (PDF 278 kb).

References

  1. Blackall PJ (1999) Infectious coryza: overview of the disease and new diagnostic options. Clin Microbiol Rev 12:627–632PubMedPubMedCentralGoogle Scholar
  2. Brena B, González-Pombo P, Batista-Viera F (2013) Immobilization of enzymes: a literature survey. Methods Mol Biol Clifton NJ 1051:15–31.  https://doi.org/10.1007/978-1-62703-550-7_2 CrossRefGoogle Scholar
  3. Chen Y, Thon V, Li Y, Yu H, Ding L, Lau K, Qu J, Hie L, Chen X (2011) One-pot three-enzyme synthesis of UDP-GlcNAc derivatives. Chem Commun 47:10815–10817.  https://doi.org/10.1039/C1CC14034E CrossRefGoogle Scholar
  4. Cimini D, Iacono ID, Carlino E, Finamore R, Restaino OF, Diana P, Bedini E, Schiraldi C (2017) Engineering S. equi subsp. zooepidemicus towards concurrent production of hyaluronic acid and chondroitin biopolymers of biomedical interest. AMB Express 7:61.  https://doi.org/10.1186/s13568-017-0364-7 CrossRefPubMedPubMedCentralGoogle Scholar
  5. DeAngelis PL, Padgett-McCue AJ (2000) Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J Biol Chem 275:24124–24129.  https://doi.org/10.1074/jbc.M003385200 CrossRefPubMedGoogle Scholar
  6. DeAngelis PL, Oatman LC, Gay DF (2003) Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors. J Biol Chem 278:35199–35203.  https://doi.org/10.1074/jbc.M306431200 CrossRefPubMedGoogle Scholar
  7. DeAngelis PL, Liu J, Linhardt RJ (2013) Chemoenzymatic synthesis of glycosaminoglycans: re-creating, re-modeling and re-designing nature’s longest or most complex carbohydrate chains. Glycobiology 23:764–777CrossRefPubMedPubMedCentralGoogle Scholar
  8. Esko JD, Kimata K, Lindahl U (2009) Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY)Google Scholar
  9. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:nrmicro773. doi:  https://doi.org/10.1038/nrmicro773
  10. Fu L, Suflita M, Linhardt RJ (2016) Bioengineered heparins and heparan sulfates. Adv Drug Deliv Rev 97:237–249.  https://doi.org/10.1016/j.addr.2015.11.002 CrossRefPubMedGoogle Scholar
  11. Green DE, DeAngelis PL (2017) Identification of a chondroitin synthase from an unexpected source, the green sulfur bacterium Chlorobium phaeobacteroides. Glycobiology 27:469–476.  https://doi.org/10.1093/glycob/cwx008 PubMedGoogle Scholar
  12. Guan W, Cai L, Wang PG (2010) Highly efficient synthesis of UDP-GalNAc/GlcNAc analogues with promiscuous recombinant human UDP-GalNAc pyrophosphorylase AGX1. Chem Weinh Bergstr Ger 16:13343–13345.  https://doi.org/10.1002/chem.201002315 Google Scholar
  13. Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE (2005) Regulation of protein function by glycosaminoglycans—as exemplified by chemokines. Annu Rev Biochem 74:385–410.  https://doi.org/10.1146/annurev.biochem.72.121801.161747 CrossRefPubMedGoogle Scholar
  14. He W, Fu L, Li G, Andrew Jones J, Linhardt RJ, Koffas M (2015) Production of chondroitin in metabolically engineered E. coli. Metab Eng 27:92–100.  https://doi.org/10.1016/j.ymben.2014.11.003 CrossRefPubMedGoogle Scholar
  15. Jin P, Zhang L, Yuan P, Kang Z, Du G, Chen J (2016) Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr Polym 140:424–432.  https://doi.org/10.1016/j.carbpol.2015.12.065 CrossRefPubMedGoogle Scholar
  16. Jing W, DeAngelis PL (2003) Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida. Glycobiology 13:661–671.  https://doi.org/10.1093/glycob/cwg085 CrossRefPubMedGoogle Scholar
  17. Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555.  https://doi.org/10.1146/annurev.biochem.76.061005.092322 CrossRefPubMedGoogle Scholar
  18. Li J, Su G, Liu J (2017) Enzymatic synthesis of homogeneous chondroitin sulfate oligosaccharides. Angew Chem 129:11946–11949.  https://doi.org/10.1002/ange.201705638 CrossRefGoogle Scholar
  19. Limberg MB, McCaa C, Kissling GE, Kaufman HE (1987) Topical application of hyaluronic acid and chondroitin sulfate in the treatment of dry eyes. Am J Ophthalmol 103:194–197CrossRefPubMedGoogle Scholar
  20. Liu J, Linhardt RJ (2014) Chemoenzymatic synthesis of heparan sulfate and heparin. Nat Prod Rep 31:1676–1685.  https://doi.org/10.1039/C4NP00076E CrossRefPubMedPubMedCentralGoogle Scholar
  21. Masuko S, Bera S, Green DE, Weïwer M, Liu J, DeAngelis PL, Linhardt RJ (2012) Chemoenzymatic synthesis of uridine diphosphate-GlcNAc and uridine diphosphate-GalNAc analogs for the preparation of unnatural glycosaminoglycans. J Org Chem 77:1449–1456.  https://doi.org/10.1021/jo202322k CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mikami T, Kitagawa H (2013) Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta BBA - Gen Subj 1830:4719–4733.  https://doi.org/10.1016/j.bbagen.2013.06.006 CrossRefGoogle Scholar
  23. Ninomiya T, Sugiura N, Tawada A, Sugimoto K, Watanabe H, Kimata K (2002) Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J Biol Chem 277:21567–21575.  https://doi.org/10.1074/jbc.M201719200 CrossRefPubMedGoogle Scholar
  24. Osawa T, Sugiura N, Shimada H, Hirooka R, Tsuji A, Shirakawa T, Fukuyama K, Kimura M, Kimata K, Kakuta Y (2009) Crystal structure of chondroitin polymerase from Escherichia coli K4. Biochem Biophys Res Commun 378:10–14.  https://doi.org/10.1016/j.bbrc.2008.08.121 CrossRefPubMedGoogle Scholar
  25. Otto NJ, Green DE, Masuko S, Mayer A, Tanner ME, Linhardt RJ, DeAngelis PL (2012) Structure/function analysis of Pasteurella multocida heparosan synthases toward defining enzyme specificity and engineering novel catalysts. J Biol Chem 287:7203–7212.  https://doi.org/10.1074/jbc.M111.311704 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Requena D, Chumbe A, Torres M, Alzamora O, Ramirez M, Valdivia-Olarte H, Gutierrez AH, Izquierdo-Lara R, Saravia LE, Zavaleta M, Tataje-Lavanda L, Best I, Fernández-Sánchez M, Icochea E, Zimic M, Fernández-Díaz M (2013) Genome sequence and comparative analysis of Avibacterium paragallinarum. Bioinformation 9:528–536.  https://doi.org/10.6026/97320630009528 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rich RL, Myszka DG (2007) Higher-throughput, label-free, real-time molecular interaction analysis. Anal Biochem 361:1–6.  https://doi.org/10.1016/j.ab.2006.10.040 CrossRefPubMedGoogle Scholar
  28. Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 7.  https://doi.org/10.3389/fmicb.2016.01408
  29. Sasisekharan R, Raman R, Prabhakar V (2006) Glycomics approach to structure-function relationships of glycosaminoglycans. Annu Rev Biomed Eng 8:181–231.  https://doi.org/10.1146/annurev.bioeng.8.061505.095745 CrossRefPubMedGoogle Scholar
  30. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307.  https://doi.org/10.1002/adsc.200700082 CrossRefGoogle Scholar
  31. Sobhany M, Kakuta Y, Sugiura N, Kimata K, Negishi M (2008) The chondroitin polymerase K4CP and the molecular mechanism of selective bindings of donor substrates to two active sites. J Biol Chem 283:32328–32333.  https://doi.org/10.1074/jbc.M804332200 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Tang Y, Zeng X, Liang J (2010) Surface plasmon resonance: an introduction to a surface spectroscopy technique. J Chem Educ 87:742–746.  https://doi.org/10.1021/ed100186y CrossRefPubMedPubMedCentralGoogle Scholar
  33. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680.  https://doi.org/10.1093/nar/22.22.4673 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tracy BS, Avci FY, Linhardt RJ, DeAngelis PL (2007) Acceptor specificity of the Pasteurella hyaluronan and chondroitin synthases and production of chimeric glycosaminoglycans. J Biol Chem 282:337–344.  https://doi.org/10.1074/jbc.M607569200 CrossRefPubMedGoogle Scholar
  35. Uebelhart D (2008) Clinical review of chondroitin sulfate in osteoarthritis. Osteoarthr Cartil 16(Suppl 3):S19–S21.  https://doi.org/10.1016/j.joca.2008.06.006 CrossRefPubMedGoogle Scholar
  36. Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH (eds) (2015) Essentials of Glycobiology, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY)Google Scholar
  37. Wang Z, Zhang Z, McCallum SA, Linhardt RJ (2010) NMR quantification for monitoring heparosan K5 capsular polysaccharide production. Anal Biochem 398:275–277.  https://doi.org/10.1016/j.ab.2009.12.005 CrossRefPubMedGoogle Scholar
  38. Wu J-R, Chen P-Y, Shien J-H, Shyu C-L, Shieh HK, Chang F, Chang P-C (2010) Analysis of the biosynthesis genes and chemical components of the capsule of Avibacterium paragallinarum. Vet Microbiol 145:90–99.  https://doi.org/10.1016/j.vetmic.2010.03.002 CrossRefPubMedGoogle Scholar
  39. Xu Y, Masuko S, Takieddin M, Xu H, Liu R, Jing J, Mousa SA, Linhardt RJ, Liu J (2011) Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334:498–501.  https://doi.org/10.1126/science.1207478 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Xu F, Miao D, Du Y, Chen X, Zhang P, Sun H (2013) Draft genome sequence of Avibacterium paragallinarum strain 221. Genome Announc doi 1:e00290–e00213.  https://doi.org/10.1128/genomeA.00290-13 Google Scholar
  41. Xu Y, Cai C, Chandarajoti K, Hsieh P-H, Li L, Pham TQ, Sparkenbaugh EM, Sheng J, Key NS, Pawlinski R, Harris EN, Linhardt RJ, Liu J (2014) Homogeneous low-molecular-weight heparins with reversible anticoagulant activity. Nat Chem Biol 10:248–250.  https://doi.org/10.1038/nchembio.1459 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Xu Y, Chandarajoti K, Zhang X, Pagadala V, Dou W, Hoppensteadt DM, Sparkenbaugh EM, Cooley B, Daily S, Key NS, Severynse-Stevens D, Fareed J, Linhardt RJ, Pawlinski R, Liu J (2017) Synthetic oligosaccharides can replace animal-sourced low–molecular weight heparins. Sci Transl Med 9:eaan5954.  https://doi.org/10.1126/scitranslmed.aan5954 CrossRefPubMedGoogle Scholar
  43. Xue J, Jin L, Zhang X, Wang F, Ling P, Sheng J (2016) Impact of donor binding on polymerization catalyzed by KfoC by regulating the affinity of enzyme for acceptor. Biochim Biophys Acta, Gen Subj 1860:844–855.  https://doi.org/10.1016/j.bbagen.2016.01.018 CrossRefGoogle Scholar
  44. Yin F-X, Wang F-S, Sheng J-Z (2016) Uncovering the catalytic direction of chondroitin AC exolyase from the reducing end towards the non-reducing end. J Biol Chem 291:4399–4406.  https://doi.org/10.1074/jbc.C115.708396 CrossRefPubMedGoogle Scholar
  45. Zhao G, Guan W, Cai L, Wang PG (2010) Enzymatic route to preparative-scale synthesis of UDP–GlcNAc/GalNAc, their analogues and GDP–fucose. Nat Protoc 5:636–646.  https://doi.org/10.1038/nprot.2010.3 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical SciencesShandong UniversityJinanChina
  2. 2.School of PharmacyUniversity College LondonLondonUK
  3. 3.Key Laboratory of BiopharmaceuticalsShandong Academy of Pharmaceutical SciencesJinanChina
  4. 4.National Glycoengineering Research CenterShandong UniversityJinanChina

Personalised recommendations