Applied Microbiology and Biotechnology

, Volume 102, Issue 9, pp 4101–4115 | Cite as

Global regulator BldA regulates morphological differentiation and lincomycin production in Streptomyces lincolnensis

Applied genetics and molecular biotechnology

Abstract

Global regulator BldA, the only tRNA for a rare leucine codon UUA, is best known for its ability to affect morphological differentiation and secondary metabolism in the genus Streptomyces. In this study, we confirmed the regulatory function of the bldA gene (Genbank accession no. EU124663.1) in Streptomyces lincolnensis. Disruption of bldA hinders the sporulation and lincomycin production, that can recur when complemented with a functional bldA gene. Western blotting assays demonstrate that translation of the lmbB2 gene which encodes a L-tyrosine hydroxylase is absolutely dependent on BldA; however, mistranslation of the lmbU gene which encodes a cluster-situated regulator (CSR) is observed in a bldA mutant. Intriguingly, when the preferential cognate codon CTG was used, the expression level of LmbU was not the highest compared to the usage of rare codon TTA or CTA, indicating the rare codon in this position is significant for the regulation of lmbU expression. Moreover, replacement of TTA codons in both genes with another leucin codon in the bldA mutant did not restore lincomycin production. Thus, we believe that the bldA gene regulates lincomycin production via controlling the translation of not only lmbB2 and lmbU, but also the other TTA-containing genes. In conclusion, the present study demonstrated the importance of the bldA gene in morphological differentiation and lincomycin production in S. lincolnensis.

Keywords

S. lincolnensis bldA Leucine codon Morphological differentiation Lincomycin production Regulatory pathway 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_8900_MOESM1_ESM.pdf (874 kb)
ESM 1 (PDF 873 kb)

References

  1. Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49.  https://doi.org/10.1016/0378-1119(92)90627-2 CrossRefPubMedGoogle Scholar
  2. Bignell DR, Tahlan K, Colvin KR, Jensen SE, Leskiw BK (2005) Expression of ccaR, encoding the positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus, is dependent on bldG. Antimicrob Agents Chemother 49:1529–1541.  https://doi.org/10.1128/AAC.49.4.1529-1541.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  4. Chater KF (1998) Taking a genetic scalpel to the Streptomyces colony. Microbiol 144:1465–1478CrossRefGoogle Scholar
  5. Chater KF (2001) Regulation of sporulation in Streptomyces coelicolor A3(2): a checkpoint multiplex? Curr Opin Microbiol 4:667–673.  https://doi.org/10.1016/S1369-5274(01)00267-3 CrossRefPubMedGoogle Scholar
  6. Chater KF (2006) Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc Lond Ser B Biol Sci 361:761–768.  https://doi.org/10.1098/rstb.2005.1758 CrossRefGoogle Scholar
  7. Chater KF, Chandra G (2006) The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol Rev 30:651–672.  https://doi.org/10.1111/j.1574-6976.2006.00033.x CrossRefPubMedGoogle Scholar
  8. Chater KF, Chandra G (2008) The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. J Microbiol 46:1–11.  https://doi.org/10.1007/s12275-007-0233-1 CrossRefPubMedGoogle Scholar
  9. Chen GF, Inouye M (1990) Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res 18:1465–1473CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ferguson NL, Peña-Castillo L, Moore MA, Bignell DR, Tahlan K (2016) Proteomics analysis of global regulatory cascades involved in clavulanic acid production and morphological development in Streptomyces clavuligerus. J Ind Microbiol Biotechnol 43:537–555.  https://doi.org/10.1007/s10295-016-1733-y CrossRefPubMedGoogle Scholar
  11. Fernández-Moreno MA, Caballero JL, Hopwood DA, Malpartida F (1991) The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell 66:769–780.  https://doi.org/10.1016/0092-8674(91)90120-N CrossRefPubMedGoogle Scholar
  12. Guthrie EP, Flaxman CS, White J, Hodgson DA, Bibb MJ, Chater KF (1998) A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. Microbiol 144:727–738.  https://doi.org/10.1099/00221287-144-3-727 CrossRefGoogle Scholar
  13. Hackl S, Bechthold A (2015) The gene bldA, a regulator of morphological differentiation and antibiotic production in Streptomyces. Arch Pharm (Weinheim) 348:455–462.  https://doi.org/10.1002/ardp.201500073 CrossRefGoogle Scholar
  14. Hesketh A, Bucca G, Laing E, Flett F, Hotchkiss G, Smith CP, Chater KF (2007) New pleiotropic effects of eliminating a rare tRNA from Streptomyces coelicolor, revealed by combined proteomic and transcriptomic analysis of liquid cultures. BMC Genomics 8:261.  https://doi.org/10.1186/1471-2164-8-261 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Higo A, Horinouchi S, Ohnishi Y (2011) Strict regulation of morphological differentiation and secondary metabolism by a positive feedback loop between two global regulator AdpA and BldA in Streptomyces griseus. Mol Microbiol 81:1607–1622.  https://doi.org/10.1111/j.1365-2958.2011.07795.x CrossRefPubMedGoogle Scholar
  16. Hopwood DA (1960) Phase-contrast observations on Streptomyces coelicolor. J Gen Microbiol 22:295–302.  https://doi.org/10.1099/00221287-22-1-295 CrossRefPubMedGoogle Scholar
  17. Hou B, Lin Y, Wu H, Guo M, Petkovic H, Tao L, Zhu X, Ye J, Zhang H (2018) The novel transcriptional regulator LmbU promotes lincomycin biosynthesis through regulating expression of its target genes in Streptomyces lincolnensis. J Bacteriol 200:e00447–e00417.  https://doi.org/10.1128/JB.00447-17 PubMedGoogle Scholar
  18. Huang H, Grove A (2013) The transcriptional regulator TamR from Streptomyces coelicolor controls a key step in central metabolism during oxidative stress. Mol Microbiol 87:1151–1161.  https://doi.org/10.1111/mmi.12156 CrossRefPubMedGoogle Scholar
  19. Jiraskova PS, Novotna J, Kuzma M, Janata J (2016) New concept of the biosynthesis of 4-alkyl-L-proline precursors of lincomycin, hormaomycin, and pyrrolobenzodiazepines: could a -glutamytransferase cleave the C-C bond? Front Microbiol 7:276.  https://doi.org/10.3389/fmicb.2016.00276 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ju KS, Zhang X, Elliot MA (2018) New kid on the block: LmbU expands the repertoire of specialized metabolic regulators in Streptomyces. J Bacteriol 200:e00559–e00517.  https://doi.org/10.1128/JB.00559-17 PubMedGoogle Scholar
  21. Kalan L, Gessner A, Thaker MN, Waglechner N, Zhu X, Szawiola A, Bechthold A, Wright GD, Zechel DL (2013) A cryptic polyene biosynthetic gene cluster in Streptomyces calvus is expressed upon complementation with a functional bldA gene. Chem Biol 20:1214–1224.  https://doi.org/10.1016/j.chembiol.2013.09.006 CrossRefPubMedGoogle Scholar
  22. Kelemen GH, Buttner MJ (1998) Initiation of aerial mycelium formation in Streptomyces. Curr Opin Microbiol 1:656–662.  https://doi.org/10.1016/S1369-5274(98)80111-2 CrossRefPubMedGoogle Scholar
  23. Kim DW, Chater K, Lee KJ, Hesketh A (2005) Changes in the extracellular proteome caused by the absence of the bldA gene product, a developmentally significant tRNA, reveal a new target for the pleiotropic regulator AdpA in Streptomyces coelicolor. J Bacterial 187:2957–2966.  https://doi.org/10.1128/JB.187.9.2957-2966.2005 CrossRefGoogle Scholar
  24. Koshla O, Lopatniuk M, Rokytskyy I, Yushchuk O, Dacyuk Y, Fedorenko V, Luzhetskyy A, Ostash B (2017) Properties of Streptomyces albus J1074 mutant deficient in tRNALeu UAA gene bldA. Arch Microbiol 199:1175–1183.  https://doi.org/10.1007/s00203-017-1389-7 CrossRefPubMedGoogle Scholar
  25. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  26. Li W, Wu J, Tao W, Zhao C, Wang y HX, Chandra G, Zhou X, Deng Z, Chater KF, Tao M (2007) A genetic and bioinformatic analysis of Streptomyces coelicolor genes containing TTA codons, possible targets for regulation by a developmentally significant tRNA. FEMS Microbiol Lett 266:20–28.  https://doi.org/10.1111/j.1574-6968.2006.00494.x CrossRefPubMedGoogle Scholar
  27. Liu F, Xu D, Zhang Y, Zhu Y, Ye J, Zhang H (2015) Identification of BagI as a positive transcriptional regulator of bagremycin biosynthesis in engineered Streptomyces sp. Tü 4128. Microbiol Res 173:18–24.  https://doi.org/10.1016/j.micres.2015.01.011 CrossRefPubMedGoogle Scholar
  28. Liu G, Chater KF, Chandra G, Niu G, Tan H (2013a) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77:112–143.  https://doi.org/10.1128/MMBR.00054-12 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Liu J, Li J, Dong H, Chen Y, Wang Y, Wu H, Li C, Weaver DT, Zhang L, Zhang B (2017) Characterization of an Lrp/AsnC family regulator SCO3361, controlling actinorhodin production and morphological development in Streptomyces coelicolor. Appl Microbiol Biotechnol 101:5773–5783.  https://doi.org/10.1007/s00253-017-8339-9 CrossRefPubMedGoogle Scholar
  30. Liu YP, Yan TT, Jiang LB, Wen Y, Song Y, Chen Z, Li JL (2013b) Characterization of SAV7471, a TetR-family transcriptional regulator involved in the regulation of coenzyme a metabolism in Streptomyces avermitilis. J Bacteriol 195:4365–4372.  https://doi.org/10.1128/JB.00716-13 CrossRefPubMedPubMedCentralGoogle Scholar
  31. López-García MT, Santamarta I, Liras P (2010) Morphological differentiation and clavulanic acid formation are affected in a Streptomyces clavuligerus adpA-deleted mutant. Microbiology 156:2354–2365.  https://doi.org/10.1099/mic.0.035956-0 CrossRefPubMedGoogle Scholar
  32. Mao XM, Luo S, Zhou RC, Wang F, Yu P, Sun N, Chen XX, Tang Y, Li YQ (2015) Transcriptional regulation of the daptomycin gene cluster in Streptomyces roseosporus by an autoregulator, AtrA. J Biol Chem 290:7992–8001.  https://doi.org/10.1074/jbc.M114.608273 CrossRefPubMedGoogle Scholar
  33. Neusser D, Schmidt H, Spizèk J, Novotnà J, Peschke U, Kaschabeck S, Tichy P, Piepersberg W (1998) The genes lmbB1 and lmbB2 of Streptomyces lincolnensis encode enzymes involved in the conversion of L-tyrosine to propylproline during the biosynthesis of the antibiotic lincomycin A. Arch Microbiol 169:322–332CrossRefPubMedGoogle Scholar
  34. O’Rourke S, Wietzorrek A, Fowler K, Corre C, Challis GL, Chater KF (2009) Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production in Streptomyces coelicolor. Mol Microbiol 71:763–778.  https://doi.org/10.1111/j.1365-2958.2008.06560.x CrossRefPubMedGoogle Scholar
  35. Shi Y, Pan C, Auckloo BN, Chen X, Chen CA, Wang K, Wu X, Ye Y, Wu B (2017) Stress-driven discovery of a cryptic antibiotic produced by Streptomyces sp. WU20 from Kueishantao hydrothermal vent with an integrated metabolomics strategy. Appl Microbiol Biotechnol 101:1395–1408.  https://doi.org/10.1007/s00253-016-7823-y CrossRefPubMedGoogle Scholar
  36. Soliveri JA, Gomez J, Bishai WR, Chater KF (2000) Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology 146:333–343.  https://doi.org/10.1099/00221287-146-2-333 CrossRefPubMedGoogle Scholar
  37. Spízek J, Rezanka T (2004) Lincomycin, cultivation of producing strains and biosynthesis. App Microbiol Biotechnol 63:510–519.  https://doi.org/10.1007/s00253-003-1431-3 CrossRefGoogle Scholar
  38. Takano E, Tao M, Long F, Bibb MJ, Wang L, Li W, Buttner MJ, Bibb MJ, Deng ZX, Chater KF (2003) A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol Microbiol 50:475–486.  https://doi.org/10.1046/j.1365-2958.2003.03728.x CrossRefPubMedGoogle Scholar
  39. Takano H, Nishiyama T, Amano S, Beppu T, Kobayashi M, Ueda K (2016) Streptomyces metabolites in divergent microbial interactions. J Ind Microbiol Biotechnol 43:143–148.  https://doi.org/10.1007/s10295-015-1680-z CrossRefPubMedGoogle Scholar
  40. Trepanier NK, Jensen SE, Alexander DC, Leskiw BK (2002) The positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus is mistranslated in a bldA mutant. Microbiology 148:643–656.  https://doi.org/10.1099/00221287-148-3-643 CrossRefPubMedGoogle Scholar
  41. Wang J, Schully KL, Pettis GS (2009) Growth-regulated expression of a bacteriocin, produced by the sweet potato pathogen Streptomyces ipomoeae, that exhibits interstrain inhibition. Appl Environ Microbiol 75:1236–1242.  https://doi.org/10.1128/AEM.01598-08 CrossRefPubMedGoogle Scholar
  42. White J, Bibb M (1997) bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J Bacteriol 179:627–633.  https://doi.org/10.1128/jb.179.3.627-633.1997 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wilkinson CJ, Hughes-Thomas ZA, Martin CJ, Böhm I, Mironenko T, Deacon M, Wheatcroft M, Wirtz G, Staunton J, Leadlay PF (2002) Increasing the efficiency of heterologous promoters in Actinomycetes. J Mol Microbiol Biotechnol 4:417–426PubMedGoogle Scholar
  44. Xu J, Zhang J, Zhuo J, Li Y, Tian Y, Tan H (2017) Activation and molecular mechanism of a cryptic oviedomycin biosynthetic gene cluster via the disruption of a global regulatory gene—adpA in Streptomyces ansochromogenes. J Biol Chem 292:19708–19720.  https://doi.org/10.1074/jbc.M117.809145 CrossRefPubMedGoogle Scholar
  45. Xu W, Huang J, Lin R, Shi J, Cohen SN (2010) Regulation of morphological differentiation in S. coelicolor by RNase III (AbsB) cleavage of mRNA encoding the AdpA transcription factor. Mol Microbiol 75:781–791.  https://doi.org/10.1111/j.1365-2958.2009.07023.x CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zhu XM, Hackl S, Thaker MN, Kalan L, Weber C, Urgast DS, Krupp EM, Brewer A, Vanner S, Szawiola A, Yim G, Feldmann J, Bechthold A, Wright GD, Zechel DL (2015) Biosynthesis of the fluorinated natural product nucleocidin in Streptomyces calvus is dependent on the bldA-specified Leu-tRNA(UUA) molecule. Chembiochem 16:2498–2506.  https://doi.org/10.1002/cbic.201500402 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bingbing Hou
    • 1
  • Liyuan Tao
    • 1
  • Xiaoyu Zhu
    • 1
  • Wei Wu
    • 1
  • Meijin Guo
    • 1
  • Jiang Ye
    • 2
  • Haizhen Wu
    • 1
    • 2
  • Huizhan Zhang
    • 1
    • 2
  1. 1.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Department of Applied BiologyEast China University of Science and TechnologyShanghaiChina

Personalised recommendations