Applied Microbiology and Biotechnology

, Volume 102, Issue 9, pp 3901–3914 | Cite as

Biotechnological production of itaconic acid—things you have to know

  • Anja KuenzEmail author
  • Susan Krull


Itaconic acid is one of the basic chemicals for the polymer industry, which can be produced on the basis of renewable raw materials. Since the middle of the twentieth century, itaconic acid has been produced industrially using the filamentous fungus Aspergillus terreus. But the demand for the organic acid is low due to the high production costs compared to alternative petrochemical manufactured raw materials. The high production costs are based on a low final titer, low productivities, and the usage of pure sugars, purified molasses, or starch hydrolysates, since the fungus reacts very sensitively to impurities in a culture medium. This review provides a comprehensive overview of the most recent developments, including a spectrum of studied microorganisms and their capabilities for the production of itaconic acid. The technological achievements in the biotechnological production of itaconic acid are presented. Particular attention is paid to current achievements in terms of suitable alternative substrates and their applicability in fermentation processes. Also, the pathway of itaconic acid and especially the influences on the fermentation process, which must be known in order to achieve a high final titer of itaconic acid, a yield close to the theoretical yield, and high productivity.


Itaconic acid Wild-type strains Genetically engineered strains Fermentation strategies Renewable resources 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A 77(7):3957–3961PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anjum S, Tripathi S, Singh N, Gupta KS (2016) Reactive extraction a boom for itaconic acid: a review. Int J Recent Sci Res 7(5):11372–11376Google Scholar
  3. Batti M, Schweiger LB (1963) Process for the production of itaconic acid. United States Patent 3 078 217Google Scholar
  4. Baup S (1837) Über eine neue Pyrogen- Citronensäure, und über Benennung der Pyrogen Säure überhaupt. Ann Chim Phys 19:29–38Google Scholar
  5. Begerow D, Stoll M, Bauer R (2006) A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98(6):906–916PubMedCrossRefGoogle Scholar
  6. BioConSept (2016) Final report summary—BIOCONSEPT (integration of bio-conversion and separation technology for the production and application of platform chemicals from 2nd generation biomass). Project ID: 289194; funded under: FP7-KBBEGoogle Scholar
  7. Blazeck J, Hill A, Jamoussi M, Pan A, Miller J, Alper HS (2015) Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng 32:66–73. PubMedCrossRefGoogle Scholar
  8. Blazeck J, Miller J, Pan A, Gengler J, Holden C, Jamoussi M, Alper HS (2014) Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol Biot 98(19):8155–8164. CrossRefGoogle Scholar
  9. Blumhoff ML, Steiger MG, Mattanovich D, Sauer M (2013) Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger. Metab Eng 19:26–32. PubMedCrossRefGoogle Scholar
  10. Bölker M (2001) Ustilago maydis—a valuable model system for the study of fungal dimorphism and virulence. Microbiol-Sgm 147:1395–1401CrossRefGoogle Scholar
  11. Bölker M, Basse CW, Schirawski J (2008) Ustilago maydis secondary metabolism—from genomics to biochemistry. Fungal Genet Biol 45:S88–S93PubMedCrossRefGoogle Scholar
  12. Bonnarme P, Gillet B, Sepulchre AM, Role C, Beloeil JC, Ducrocq C (1995) Itaconate biosynthesis in Aspergillus-terreus. J Bacteriol 177(12):3573–3578PubMedPubMedCentralCrossRefGoogle Scholar
  13. Calam CT (1939) Studies in the biochemistry of microorganisms. XXIII. Itaconic acid, a metabolic product of Aspergillus terreus Thom. Biochem J 33:1488–1495PubMedPubMedCentralCrossRefGoogle Scholar
  14. Carstensen F, Klement T, Buchs J, Melin T, Wessling M (2013) Continuous production and recovery of itaconic acid in a membrane bioreactor. Bioresour Technol 137:179–187. PubMedCrossRefGoogle Scholar
  15. Chin T, Sano M, Takahashi T, Ohara H, Aso Y (2015) Photosynthetic production of itaconic acid in Synechocystis sp PCC6803. J Biotechnol 195:43–45. PubMedCrossRefGoogle Scholar
  16. Choudhary AQ, Pirt SJ (1966) The influence of metal-complexing agents on citric acid production by Aspergillus niger. J Gen Microbiol 43(1):71–81. PubMedCrossRefGoogle Scholar
  17. Clark DS, Ito K, Horitsu H (1966) Effect of manganese and other heavy metals on submerged citric acid fermentation of molasses. Biotechnol Bioeng 8(4):465–471CrossRefGoogle Scholar
  18. Cros P, Schneider D (1993) Microbiological production of itaconic acid. United States Patent 5 231 016Google Scholar
  19. Deak E, Wilson SD, White E, Carr JH, Balajee SA (2009) Aspergillus terreus accessory conidia are unique in surface architecture, cell wall composition and germination kinetics. PLoS One 4(10):e7673. PubMedPubMedCentralCrossRefGoogle Scholar
  20. Delidovich I, Hausoul PJ, Deng L, Pfutzenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116(3):1540–1599. PubMedCrossRefGoogle Scholar
  21. Durant Y (2009) Development of integrated production of polyitaconic acid from northeast hardwood biomass—NIFA project 2009–2012. Technical report, Itaconix, LCCGoogle Scholar
  22. Dwiarti L, Otsuka M, Miura S, Yaguchi M, Okabe M (2007) Itaconic acid production using sago starch hydrolysate by Aspergillus terreus TN484-M1. Bioresour Technol 98(17):3329–3337. PubMedCrossRefGoogle Scholar
  23. Dwiarti L, Yamane K, Yamatani H, Kahar P, Okabe M (2002) Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J Biosci Bioeng 94(1):29–33PubMedCrossRefGoogle Scholar
  24. Eimhjellen KE, Larsen H (1955) Mechanism of itaconic acid formation by Aspergillus-terreus. 2. Effect of substrates and inhibitors. Biochem J 60(1–4):139–147PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fuchs G, Schlegel HG (2006) Allgemeine Mikrobiologie. Thieme Flexible Taschenbücher, Thieme Georg VerlagGoogle Scholar
  26. Geiser E, Przybilla SK, Friedrich A, Buckel W, Wierckx N, Blank LM, Bolker M (2016a) Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microb Biotechnol 9(1):116–126. PubMedCrossRefGoogle Scholar
  27. Geiser E, Przybilla SK, Engel M, Kleineberg W, Buttner L, Sarikaya E, Hartog TD, Klankermayer J, Leitner W, Bolker M, Blank LM, Wierckx N (2016b) Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production. Metab Eng 38:427–435. PubMedCrossRefGoogle Scholar
  28. Geiser E, Wiebach V, Wierckx N, Blank LM (2014) Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. Fungal Biol Biotechnol 1(1):2. PubMedPubMedCentralCrossRefGoogle Scholar
  29. Guevara ED, Tabuchi T (1990) Production of 2-hydroxyparaconic and itatartaric acids by Ustilago cynodontis and simple recoyery process of the acids. Agric Biol Chem 54(9):2359–2365Google Scholar
  30. Guevarra ED, Tabuchi T (1990) Accumulation of itaconic, 2-hydroxyparaconic, itatartaric, and malic-acids by strains of the genus Ustilago. Agric Biol Chem 54(9):2353–2358Google Scholar
  31. Gyamerah M (1995a) Factors affecting the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation. Appl Microbiol Biot 44(3–4):356–361CrossRefGoogle Scholar
  32. Gyamerah MH (1995b) Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Appl Microbiol Biot 44(1–2):20–26CrossRefGoogle Scholar
  33. Harder BJ, Bettenbrock K, Klamt S (2016) Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metab Eng 38:29–37. PubMedCrossRefGoogle Scholar
  34. Haskins RH, Thorn JA, Boothroyd B (1955) Biochemistry of the Ustilaginales. 11. Metabolic products of Ustilago zeae in submerged culture. Can J Microbiol 1(9):749–756PubMedCrossRefGoogle Scholar
  35. Hevekerl A (2016) Biotechnisch erzeugte Itaconsäure. Cuvillier VerlagGoogle Scholar
  36. Hevekerl A, Kuenz A, Vorlop K-D (2014a) Filamentous fungi in microtiter plates—an easy way to optimize itaconic acid production with Aspergillus terreus. Appl Microbiol Biot:1–7 doi:
  37. Hevekerl A, Kuenz A, Vorlop KD (2014b) Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl Microbiol Biot 98(24):10005–10012. CrossRefGoogle Scholar
  38. Hewald S, Josephs K, Bolker M (2005) Genetic analysis of biosurfactant production in Ustilago maydis. Appl Environ Microb 71(6):3033–3040CrossRefGoogle Scholar
  39. Holzhäuser FJ, Artz J, Palkovits S, Kreyenschulte D, Büchs J, Palkovits R (2017) Electrocatalytic upgrading of itaconic acid to methylsuccinic acid using fermentation broth as a substrate solution. Green Chem 19(10):2390–2397. CrossRefGoogle Scholar
  40. Hossain AH, Li A, Brickwedde A, Wilms L, Caspers M, Overkamp K, Punt PJ (2016) Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger. Microb Cell Factories 15(1):130. CrossRefGoogle Scholar
  41. Huang XN, Chen M, Li JJ, Lu XF (2016) Establishing an efficient gene-targeting system in an itaconic-acid producing Aspergillus terreus strain. Biotechnol Lett 38(9):1603–1610. PubMedCrossRefGoogle Scholar
  42. Jaklitsch WM, Kubicek CP, Scrutton MC (1991) The subcellular organization of itaconate biosynthesis in Aspergillus terreus. J Gen Microbiol 137:533–539CrossRefGoogle Scholar
  43. Jeon HG, Cheong DE, Han Y, Song JJ, Choi JH (2016) Itaconic acid production from glycerol using Escherichia coli harboring a random synonymous codon-substituted 5'-coding region variant of the cadA gene. Biotechnol Bioeng 113(7):1504–1510. PubMedCrossRefGoogle Scholar
  44. Jimenez-Quero A, Pollet E, Zhao M, Marchioni E, Averous L, Phalip V (2016) Itaconic and fumaric acid production from biomass hydrolysates by Aspergillus strains. J Microbiol Biotechnol 26(9):1557–1565. PubMedCrossRefGoogle Scholar
  45. Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16PubMedPubMedCentralCrossRefGoogle Scholar
  46. Juy MI, Orejas JA, Lucca ME (2010) Study of itaconic acid production by Aspergillus terrus MJL05 strain with different variable. Rev Colom Biotechnol 12:187–193Google Scholar
  47. Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Muller O, Perlin MH, Wosten HAB, de Vries R, Ruiz-Herrera J, Reynaga-Pena CG, Snetselaar K, McCann M, Perez-Martin J, Feldbrugge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, Gonzalez-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Munch K, Rossel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho ECH, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li WX, Sanchez-Alonso P, Schreier PH, Hauser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schluter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Guldener U, Munsterkotter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444(7115):97–101PubMedCrossRefGoogle Scholar
  48. Kanamasa S, Dwiarti L, Okabe M, Park EY (2008) Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biot 80(2):223–229. CrossRefGoogle Scholar
  49. Kane J, Finlay A, Amann P (1945) Production of itaconic acid. United States Patent 2 385 283Google Scholar
  50. Karaffa L, Diaz R, Papp B, Fekete E, Sandor E, Kubicek CP (2015) A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus. Appl Microbiol Biot 99(19):7937–7944. CrossRefGoogle Scholar
  51. Kawamura D, Furuhashi M, Saito O, Matsui H (1981) Japan Patent 56 137 893Google Scholar
  52. Kim J, Seo HM, Bhatia SK, Song HS, Kim JH, Jeon JM, Choi KY, Kim W, Yoon JJ, Kim YG, Yang YH (2017) Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Sci Rep 7:39768. PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kinoshita K (1932) Über die Produktion von Itaconsäure und Mannit durch einen neuen Schimmelpilz, Aspergillus itaconicus. Acta Phytochimica 5:271–287Google Scholar
  54. Klement T, Büchs J (2013) Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431. PubMedCrossRefGoogle Scholar
  55. Kobayashi T (1971) Process for recovering itaconic acid and salts thereof from fermented broth. Japan Patent 3 621 053Google Scholar
  56. Kobayashi T (1978) Production of itaconic acid from wood waste. Process Biochem 13(5):15–22Google Scholar
  57. Kobayashi T, Nakamura I, Nakagawa M (1972) Process design for itaconic acid fermentation. Proc IV IFS: Ferm Technol today. 215–221Google Scholar
  58. Kobayashi T, Nakamura I, Nakagawa M (1973) Itaconic acid production. Japan Patent 48 092 584Google Scholar
  59. Kobayashi T, Nakamura I, Nakagawa M (1980) Itaconic acid production. Japan Patent 51 028 711Google Scholar
  60. Krull S, Eidt L, Hevekerl A, Kuenz A, Prüße U (2017a) Itaconic acid production from wheat chaff by Aspergillus terreus. Process Biochem 63:169–176. CrossRefGoogle Scholar
  61. Krull S, Hevekerl A, Kuenz A, Prüße U (2017b) Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers. Appl Microbiol Biot 101:4063–4072. CrossRefGoogle Scholar
  62. Kück U, Nowrousian M, Reiß J, Hoff B, Engh I (2009) Schimmelpilze: Lebensweise, Nutzen, Schaden, Bekämpfung. SpringerGoogle Scholar
  63. Kuenz A (2008) Itaconsäureherstellung aus nachwachsenden Rohstoffen als Ersatz für petrochemisch hergestellte Acrylsäure. PhD thesis, Technical University of BraunschweigGoogle Scholar
  64. Kuenz A, Gallenmüller Y, Willke T, Vorlop K-D (2012) Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biot 96(5):1209–1216. CrossRefGoogle Scholar
  65. Kumar S, Krishnan S, Samal SK, Mohanty S, Nayak SK (2017) Itaconic acid used as a versatile building block for the synthesis of renewable resource-based resins and polyesters for future prospective: a review. Polym Int 66(10):1349–1363. CrossRefGoogle Scholar
  66. Lai LST, Hung CS, Lo CC (2007) Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillus terreus ATCC 20542. J Biosci Bioeng 104(1):9–13PubMedCrossRefGoogle Scholar
  67. Lambert RJ, Stratford M (1999) Weak-acid preservatives: modelling microbial inhibition and response. J Appl Microbiol 86(1):157–164PubMedCrossRefGoogle Scholar
  68. Larsen H, Eimhjellen K (1955) The mechanism of itaconic acid formation by Aspergillus terreus. 1. The effect of acidity. Biochem J 60(1):135–139PubMedPubMedCentralCrossRefGoogle Scholar
  69. LeafDutchDNO (2015a) Leaf Technologies and Dutch DNA Biotech enter in R&D collaboration for the development of a value added fermentation solution to produce itaconic acid. Accessed 22.12.2017
  70. LeafDutchDNO (2015b) LEAF Technologies partners with Dutch DNA to produce itaconic acid. Int Sugar J 117(1403):783–783Google Scholar
  71. Levinson WE, Kurtzman CP, Kuo TM (2006) Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzyme Microb Tech 39(4):824–827CrossRefGoogle Scholar
  72. Li A, Pfelzer N, Zuijderwijk R, Punt P (2012) Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. BMC Biotechnol 12:57PubMedPubMedCentralCrossRefGoogle Scholar
  73. Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 48(6):602–611. PubMedCrossRefGoogle Scholar
  74. Li X, Zheng K, Lai C, Ouyang J, Yong Q (2016) Improved itaconic acid production from undetoxified enzymatic hydrolysate of steam-exploded corn stover using an Aspergillus terreus mutant generated by atmospheric and room temperature plasma. Bioresources 11(4):9047–9058Google Scholar
  75. Listofcompanies (2017) Accessed 22.12.2017
  76. Lockwood LB (1975) Production of organic acids by fermentation. In: Peppler HJ, Perlman D (eds) Microbial technology, vol 2. Academic Press, New York, pp 356–386Google Scholar
  77. Lockwood LB, Reeves MD (1945) Some factors affecting the production of itaconic acid by Aspergillus terreus. Arch Biochem 6(3):455–469Google Scholar
  78. López-Garzón CS, Straathof AJJ (2014) Recovery of carboxylic acids produced by fermentation. Biotechnol Adv 32(5):873–904. PubMedCrossRefGoogle Scholar
  79. Maassen N, Panakova M, Wierckx N, Geiser E, Zimmermann M, Bölker M, Klinner U, Blank LM (2014) Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Eng Life Sci 14:129–134. CrossRefGoogle Scholar
  80. Magalhães AI, de Carvalho JC, Ramírez ENM, Medina JDC, Soccol CR (2016a) Separation of itaconic acid from aqueous solution onto ion-exchange resins. J Chem Eng Data 61(1):430–437. CrossRefGoogle Scholar
  81. Magalhães AI Jr, de Carvalho JC, Medina JD, Soccol CR (2016b) Downstream process development in biotechnological itaconic acid manufacturing. Appl Microbiol Biotechnol 101:1–12. PubMedCrossRefGoogle Scholar
  82. Marked Report (2015) Transparency market research,Market Report, Itaconic AcidGoogle Scholar
  83. Mattey M (1992) The production of organic acids. Crit Rev Biotechnol 12(1–2):87–132PubMedCrossRefGoogle Scholar
  84. McCoy M (2015) European biotechs eye itaconic acid. Chem Eng News 93(41):16–17 ConcentratesCrossRefGoogle Scholar
  85. Monaghan RL, Alberts AW, Hoffman CH, Albers-Schonberg G (1981) Hypocholesteremic fermentation products and process of preparation. United States Patent 4 294 926Google Scholar
  86. Nelson GEN, Traufler DH, Kelley SE, Lockwood LB (1952) Production of itaconic acid by Aspergillus terreus in 20-Liter fermentors. Ind Eng Chem 44(5):1166–1168. CrossRefGoogle Scholar
  87. Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biot 84(4):597–606CrossRefGoogle Scholar
  88. Otten A, Brocker M, Bott M (2015) Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab Eng 30:156–165. PubMedCrossRefGoogle Scholar
  89. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33CrossRefGoogle Scholar
  90. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189–259PubMedCrossRefGoogle Scholar
  91. Park YS, Ohta N, Okabe M (1993) Effect of dissolved-oxygen concentration and impeller tip speed on itaconic acid production by Aspergillus terreus. Biotechnol Lett 15(6):583–586CrossRefGoogle Scholar
  92. Pedroso GB, Montipó S, Mario DAN, Alves SH, Martins AF (2017) Building block itaconic acid from left-over biomass. Biomass Convers Biorefin 7(1):23–35. CrossRefGoogle Scholar
  93. Petruccioli M, Pulci V, Federici F (1999) Itaconic acid production by Aspergillus terreus on raw starchy materials. Lett Appl Microbiol 28(4):309–312CrossRefGoogle Scholar
  94. Pfeifer VF, Vojnovich C, Heger EN (1952) Itaconic acid by fermentation with Aspergillus terreus. Ind Eng Chem 44(12):2975–2980. CrossRefGoogle Scholar
  95. Reddy CSK, Singh RP (2002) Enhanced production of itaconic acid from corn starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR10. Bioresour Technol 85(1):69–71PubMedCrossRefGoogle Scholar
  96. Robert T, Friebel S (2016) Itaconic acid - a versatile building block for renewable polyesters with enhanced functionality. Green Chem 18:2922–2934. CrossRefGoogle Scholar
  97. Roehr M, Kubicek CP, Kominek J (1996). Citric acid, in Biotechnology: Products of primary metabolism, Volume 6, Second Edition (eds H.-J. Rehm and G. Reed), pp. 307–345. Wiley-VCH Verlag GmbHGoogle Scholar
  98. Rychtera M, Wase DAJ (1981) The growth of Aspergillus terreus and the production of itaconic acid in batch and continuous cultures. The influence of pH. J Chem Technol Biotechnol 31:509–521. CrossRefGoogle Scholar
  99. Saha BC (2017) Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. J Ind Microbiol Biot 44(2):303–315CrossRefGoogle Scholar
  100. Saha BC, Kennedy GJ (2017a) Mannose and galactose as substrates for production of itaconic acid by Aspergillus terreus. Lett Appl Microbiol 65(6):527–533. PubMedCrossRefGoogle Scholar
  101. Saha BC, Kennedy GJ (2017b) Ninety six well microtiter plate as microbioreactors for production of itaconic acid by six Aspergillus terreus strains. J Microbiol Methods 144:53–59. PubMedCrossRefGoogle Scholar
  102. Saha BC, Kennedy GJ, Qureshi N, Bowman MJ (2017) Production of itaconic acid from pentose sugars by Aspergillus terreus. Biotechnol Prog 33(4):1059–1067. PubMedCrossRefGoogle Scholar
  103. Sayama A, Kobayashi K, Ogoshi A (1994) Morphological and physiological comparisons of Helicobasidium mompa and H. purpureum. Mycoscience 35(1):15–20CrossRefGoogle Scholar
  104. Schute K, Detoni C, Kann A, Jung O, Palkovits R, Rose M (2016) Separation in biorefineries by liquid phase adsorption: itaconic acid as case study. ACS Sustain Chem Eng 4(11):5921–5928. CrossRefGoogle Scholar
  105. Shin WS, Lee D, Kim S, Jeong YS, Chun GT (2013) Application of scale-up criterion of constant oxygen mass transfer coefficient (kLa) for production of itaconic acid in a 50 L pilot-scale fermentor by fungal cells of Aspergillus terreus. J Microbiol Biotechnol 23(10):1445–1453PubMedCrossRefGoogle Scholar
  106. Specht R, Aurich A, Kreyß E, Barth G, Bodinus C (2014) Verfahren zur biotechnologischen Herstellung von Itaconsäure. DE 102008011854 B4Google Scholar
  107. Steiger MG, Blumhoff ML, Mattanovich D, Sauer M (2013) Biochemistry of microbial itaconic acid production. Front Microbiol 4: Article 23Google Scholar
  108. Strelko CL, Lu WY, Dufort FJ, Seyfried TN, Chiles TC, Rabinowitz JD, Roberts MF (2011) Itaconic acid is a mammalian metabolite induced during macrophage activation. J Am Chem Soc 133(41):16386–16389PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tabuchi T, Sugisawa T, Ishidori T, Nakahara T, Sugiyama J (1981) Itaconic acid fermentation by a yeast belonging to the genus Candida. Agric Biol Chem 45(2):475–479Google Scholar
  110. Tate BE (1981) Itaconic acid and derivatives. Grayson MEckroth E (eds) Kirk-Othmer Encycl Chem Technol 3:865–873Google Scholar
  111. Tevz G, Bencina M, Legisa M (2010) Enhancing itaconic acid production by Aspergillus terreus. Appl Microbiol Biot 87(5):1657–1664. CrossRefGoogle Scholar
  112. Tippkotter N, Duwe AM, Wiesen S, Sieker T, Ulber R (2014) Enzymatic hydrolysis of beech wood lignocellulose at high solid contents and its utilization as substrate for the production of biobutanol and dicarboxylic acids. Bioresour Technol 167:447–455. PubMedCrossRefGoogle Scholar
  113. Tomlinson N, Campbell JJR, Trussell PC (1950) The influence of zinc, iron, copper, and manganese on the production of citric acid by Aspergillus niger. J Bacteriol 59(2):217–227PubMedCentralGoogle Scholar
  114. Tsao G, Ouyang P, Chen J (2010 ) Biotechnology in China II: chemicals, energy and environment. Advances in biochemical engineering/biotechnology. Springer Berlin HeidelbergGoogle Scholar
  115. van der Straat L, Tamayo-Ramos J, Schonewille T, de Graaff L (2013) Overexpression of a modified 6-phosphofructo-1-kinase results in an increased itaconic acid productivity in Aspergillus niger. AMB Express 3(1):57PubMedPubMedCentralCrossRefGoogle Scholar
  116. van der Straat L, Vernooij M, Lammers M, van den Berg W, Schonewille T, Cordewener J, van der Meer I, Koops A, de Graaff LH (2014) Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microb Cell Factories 13:11. CrossRefGoogle Scholar
  117. Wang JH, Tsai SH, Teng K (2012) Producing itaconic acid in yeast using glycerol as the substrate. United States Patent 8(192):965Google Scholar
  118. Weastra sro (2013) Wp 8.1, determination of market potential for selected platform chemicals: itaconic acid, succinic acid, 2,5-furandicarboxylic acid. Technical report, BioconseptGoogle Scholar
  119. Welter K (2000) Biotechnische Produktion von Itaconsäure aus nachwachsenden Rohstoffen mit immobilisierten Zellen. PhD thesis, Technical University of BraunschweigGoogle Scholar
  120. Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass: volume I—results of screening for potential candidates from sugars and synthesis gas. Technical report, Department of Energy Washington DCGoogle Scholar
  121. Willke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Appl Microbiol Biot 56(3–4):289–295CrossRefGoogle Scholar
  122. Wu X, Liu Q, Deng Y, Li J, Chen X, Gu Y, Lv X, Zheng Z, Jiang S, Li X (2017) Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC40205 mutant. Bioresour Technol 241:25–34. PubMedCrossRefGoogle Scholar
  123. Yahiro K, Shibata S, Jia SR, Park Y, Okabe M (1997) Efficient itaconic acid production from raw corn starch. J Ferment Bioeng 84(4):375–377CrossRefGoogle Scholar
  124. Yahiro K, Takahama T, Park YS, Okabe M (1995) Breeding of Aspergillus-terreus mutant TN-484 for itaconic acid production with high-yield. J Ferment Bioeng 79(5):506–508CrossRefGoogle Scholar
  125. Zambanini T, Hartmann SK, Schmitz LM, Buttner L, Hosseinpour Tehrani H, Geiser E, Beudels M, Venc D, Wandrey G, Buchs J, Schwarzlander M, Blank LM, Wierckx N (2017a) Promoters from the itaconate cluster of Ustilago maydis are induced by nitrogen depletion. Fungal Biol Biotechnol 4:11. PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zambanini T, Hosseinpour Tehrani H, Geiser E, Merker D, Schleese S, Krabbe J, Buescher JM, Meurer G, Wierckx N, Blank LM (2017b) Efficient itaconic acid production from glycerol with Ustilago vetiveriae TZ1. Biotechnol Biofuels 10:131. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Thünen - Institute of Agricultural TechnologyBraunschweigGermany

Personalised recommendations