Applied Microbiology and Biotechnology

, Volume 102, Issue 9, pp 4063–4074 | Cite as

Wax synthase MhWS2 from Marinobacter hydrocarbonoclasticus: substrate specificity and biotechnological potential for wax ester production

  • Magdalena MiklaszewskaEmail author
  • Franziska Dittrich-Domergue
  • Antoni Banaś
  • Frédéric Domergue
Biotechnologically relevant enzymes and proteins


Wax synthases are involved in the biosynthesis of wax esters, lipids with great industrial potential. Here, we heterologously expressed the native wax synthase MhWS2 from Marinobacter hydrocarbonoclasticus in Saccharomyces cerevisiae and performed comprehensive analysis of its substrate specificity. The enzyme displayed high wax synthase (but no diacylglycerol acyltransferase) activity both in vivo and in vitro. In the presence of exogenous fatty alcohol, wax esters accounted for more than 57% of total yeast lipids. In vitro, MhWS2 produced wax esters with most of the tested substrates, showing the highest activity with 14:0-, 18:1-, 18:0-, 12:0-, and 16:0-CoA together with saturated C10-C16 fatty alcohols. Co-expression with genes encoding fatty acyl reductases resulted in the accumulation of C26-C36 wax esters. Altogether, our results provide a detailed characterization of MhWS2 which should be useful in the development of strategies for producing wax esters in various expression systems.


Wax synthase Fatty acyl reductase Wax esters Fatty alcohols Marinobacter hydrocarbonoclasticus 



This work is part of ICON (Industrial Crops Producing Added Value Oils for Novel Chemicals), a European Commission-sponsored FP7 project, and was also supported by the system project “InnoDoktorant – Scholarships for PhD students, IVth edition,” co-financed by the European Union in the frame of the European Social Fund and by the Faculty of Biology, University of Gdansk (grant no. 538-L111-B593-14). GC-based analyses were performed at the Metabolome Facility of Bordeaux-MetaboHUB (ANR-11-INBS-0010).

Compliance with ethical standards

Conflict of interest

The authors declare that they do not have any conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Aslan S, Hofvander P, Dutta P, Sun C, Sitbon F (2015) Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion. Transgenic Res 24:945–953. CrossRefPubMedGoogle Scholar
  2. Aslan S, Sun C, Leonova S, Dutta P, Dörmann P, Domergue F, Stymne S, Hofvander P (2014) Wax esters of different compositions produced via engineering of leaf chloroplast metabolism in Nicotiana benthamiana. Metab Eng 25:103–112. CrossRefPubMedGoogle Scholar
  3. Barney BM, Wahlen BD, Garner E, Wei J, Seefeldt LC (2012) Differences in substrate specificities of five bacterial wax ester synthases. Appl Environ Microbiol 78:5734–5745. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Biester E-M, Hellenbrand J, Gruber J, Hamberg M, Frentzen M (2012) Identification of avian wax synthases. BMC Biochem 13:4. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. CrossRefPubMedGoogle Scholar
  6. Chacón MG, Fournier AE, Tran F, Dittrich-Domergue F, Pulsifer IP, Domergue F, Rowland O (2013) Identification of amino acids conferring chain length substrate specificities on fatty alcohol-forming reductases FAR5 and FAR8 from Arabidopsis thaliana. J Biol Chem 288:30345–30355. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cheng JB, Russell DW (2004) Mammalian wax biosynthesis II. Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family. J Biol Chem 279:37798–37807. CrossRefPubMedPubMedCentralGoogle Scholar
  8. de Jong BW, Shi S, Siewers V, Nielsen J (2014) Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb Cell Factories 13:39. CrossRefGoogle Scholar
  9. Dittrich-Domergue F, Joubès J, Moreau P, Lessire R, Stymne S, Domergue F (2014) The bifunctional protein TtFARAT from Tetrahymena thermophila catalyzes the formation of both precursors required to initiate ether lipid biosynthesis. J Biol Chem 289:21984–21994. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Domergue F, Vishwanath SJ, Joubès J, Ono J, Lee JA, Bourdon M, Alhattab R, Lowe C, Pascal S, Lessire R, Rowland O (2010) Three Arabidopsis fatty acyl-coenzyme A reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition. Plant Physiol 153:1539–1554. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576. CrossRefPubMedGoogle Scholar
  12. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96. CrossRefPubMedGoogle Scholar
  13. Guncheva MH, Zhiryakova D (2008) High-yield synthesis of wax esters catalysed by modified Candida rugosa lipase. Biotechnol Lett 30:509–512. CrossRefPubMedGoogle Scholar
  14. Holtzapple E, Schmidt-Dannert C (2007) Biosynthesis of isoprenoid wax ester in Marinobacter hydrocarbonoclasticus DSM 8798: identification and characterization of isoprenoid coenzyme A synthetase and wax ester synthases. J Bacteriol 189:3804–3812. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jetter R, Kunst L (2008) Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J 54:670–683. CrossRefPubMedGoogle Scholar
  16. Kalscheuer R, Stöveken T, Luftmann H, Malkus U, Reichelt R, Steinbüchel A (2006) Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl Environ Microbiol 72:1373–1379. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kawelke S, Feussner I (2015) Two predicted transmembrane domains exclude very long chain fatty acyl-CoAs from the active site of mouse wax synthase. PLoS One 10:e0145797. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lee R, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306. CrossRefGoogle Scholar
  19. Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R, Kunst L (2008) Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol 148:97–107. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Menendez-Bravo S, Comba S, Gramajo H, Arabolaza A (2017) Metabolic engineering of microorganisms for the production of structurally diverse esters. Appl Microbiol Biotechnol 101:3043–3053. CrossRefPubMedGoogle Scholar
  21. Miklaszewska M, Banaś A (2016) Biochemical characterization and substrate specificity of jojoba fatty acyl-CoA reductase and jojoba wax synthase. Plant Sci 249:84–92. CrossRefPubMedGoogle Scholar
  22. Miklaszewska M, Kawiński A, Banaś A (2013) Detailed characterization of the substrate specificity of mouse wax synthase. Acta Biochim Pol 60:209–215PubMedGoogle Scholar
  23. Petersson AEV, Gustafsson LM, Nordblad M, Börjesson P, Mattiasson B, Adlercreutz P (2005) Wax esters produced by solvent-free energy-efficient enzymatic synthesis and their applicability as wood coatings. Green Chem 7:837. CrossRefGoogle Scholar
  24. Phleger CF, Grigor MR (1990) Role of wax esters in determining buoyancy in Hoplostethus atlanticus (Beryciformes: Trachichthyidae). Mar Biol 105:229–233. CrossRefGoogle Scholar
  25. Pond DW, Tarling GA (2011) Phase transitions of wax esters adjust buoyancy in diapausing Calanoides acutus. Limnol Oceanogr 56:1310–1318. CrossRefGoogle Scholar
  26. Röttig A, Steinbüchel A (2013) Acyltransferases in bacteria. Microbiol Mol Biol Rev 77:277–321. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Röttig A, Wolf S, Steinbüchel A (2016) In vitro characterization of five bacterial WS/DGAT acyltransferases regarding the synthesis of biotechnologically relevant short-chain-length esters: test of short-chain ester synthesis by acyltransferases. Eur J Lipid Sci Technol 118:124–132. CrossRefGoogle Scholar
  28. Röttig A, Zurek PJ, Steinbüchel A (2015) Assessment of bacterial acyltransferases for an efficient lipid production in metabolically engineered strains of E. coli. Metab Eng 32:195–206. CrossRefPubMedGoogle Scholar
  29. Rowland O, Domergue F (2012) Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications. Plant Sci 193–194:28–38. CrossRefPubMedGoogle Scholar
  30. Ruiz-Lopez N, Broughton R, Usher S, Salas JJ, Haslam RP, Napier JA, Beaudoin F (2017) Tailoring the composition of novel wax esters in the seeds of transgenic Camelina sativa through systematic metabolic engineering. Plant Biotechnol J 15:837–849. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–113. CrossRefPubMedGoogle Scholar
  32. Sánchez M, Nicholls DG, Brindley DN (1973) The relationship between palmitoyl-coenzyme A synthetase activity and esterification of sn-glycerol 3-phosphate in rat liver mitochondria. Biochem J 132:697–706. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sandager L, Gustavsson MH, Ståhl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277:6478–6482. CrossRefPubMedGoogle Scholar
  34. Santala S, Efimova E, Koskinen P, Karp MT, Santala V (2014) Rewiring the wax ester production pathway of Acinetobacter baylyi ADP1. ACS Synth Biol 3:145–151. CrossRefPubMedGoogle Scholar
  35. Sheng J, Feng X (2015) Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions. Front Microbiol 6.
  36. Shi S, Valle-Rodríguez JO, Khoomrung S, Siewers V, Nielsen J (2012) Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 5:7. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J (2014) Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters: enhancement of FAEEs production. Biotechnol Bioeng 111:1740–1747. CrossRefPubMedGoogle Scholar
  38. Stanley DW, Nelson DR (eds) (1993) Insect lipids: chemistry, biochemistry, and biology. University of Nebraska Press, LincolnGoogle Scholar
  39. Stöveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbüchel A (2005) The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J Bacteriol 187:1369–1376. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stöveken T, Steinbüchel A (2008) Bacterial acyltransferases as an alternative for lipase-catalyzed acylation for the production of oleochemicals and fuels. Angew Chem Int Ed 47:3688–3694. CrossRefGoogle Scholar
  41. Subileau M, Jan A-H, Nozac’h H, Pérez-Gordo M, Perrier V, Dubreucq E (2015) The 3D model of the lipase/acyltransferase from Candida parapsilosis, a tool for the elucidation of structural determinants in CAL-A lipase superfamily. Biochim Biophys Acta BBA - Proteins Proteomics 1854:1400–1411. CrossRefPubMedGoogle Scholar
  42. Teerawanichpan P, Qiu X (2010) Fatty acyl-CoA reductase and wax synthase from Euglena gracilis in the biosynthesis of medium-chain wax esters. Lipids 45:263–273. CrossRefPubMedGoogle Scholar
  43. Thompson RA, Trinh CT (2014) Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization: enhancing FAEEs production in S. cerevisiae. Biotechnol Bioeng 111:2200–2208. CrossRefPubMedGoogle Scholar
  44. Valle-Rodríguez JO, Shi S, Siewers V, Nielsen J (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced biofuel, by eliminating non-essential fatty acid utilization pathways. Appl Energy 115:226–232. CrossRefGoogle Scholar
  45. Vanhercke T, Wood CC, Stymne S, Singh SP, Green AG (2013) Metabolic engineering of plant oils and waxes for use as industrial feedstocks. Plant Biotechnol J 11:197–210. CrossRefPubMedGoogle Scholar
  46. Villa JA, Cabezas M, de la Cruz F, Moncalián G (2014) Use of limited proteolysis and mutagenesis to identify folding domains and sequence motifs critical for wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase activity. Appl Environ Microbiol 80:1132–1141. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wagner M, Hoppe K, Czabany T, Heilmann M, Daum G, Feussner I, Fulda M (2010) Identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri. Plant Physiol Biochem PPB Société Fr Physiol Végétale 48:407–416. CrossRefGoogle Scholar
  48. Wenning L, Yu T, David F, Nielsen J, Siewers V (2017) Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae: turning S. cerevisiae into a jojoba plant. Biotechnol Bioeng 114:1025–1035. CrossRefPubMedGoogle Scholar
  49. Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J (2016) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7:11709. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zhu L-H, Krens F, Smith MA, Li X, Qi W, van Loo EN, Iven T, Feussner I, Nazarenus TJ, Huai D, Taylor DC, Zhou X-R, Green AG, Shockey J, Klasson KT, Mullen RT, Huang B, Dyer JM, Cahoon EB (2016) Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production. Sci Rep 6:22181. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant Physiology and BiotechnologyUniversity of GdańskGdańskPoland
  2. 2.Laboratoire de Biogenèse MembranaireUMR 5200 CNRS Université de BordeauxVillenave D’OrnonFrance
  3. 3.Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of GdańskGdańskPoland

Personalised recommendations