Applied Microbiology and Biotechnology

, Volume 102, Issue 8, pp 3561–3571 | Cite as

4-Hydroxybenzoic acid—a versatile platform intermediate for value-added compounds

  • Songwei Wang
  • Muhammad Bilal
  • Hongbo Hu
  • Wei Wang
  • Xuehong Zhang
Mini-Review

Abstract

4-Hydroxybenzoic acid (4-HBA) has recently emerged as a promising intermediate for several value-added bioproducts with potential biotechnological applications in food, cosmetics, pharmacy, fungicides, etc. Over the past years, a variety of biosynthetic techniques have been developed for producing the 4-HBA and 4-HBA-based products. At this juncture, synthetic biology and metabolic engineering approaches enabled the biosynthesis of 4-HBA to address the increasing demand for high-value bioproducts. This review summarizes the biosynthesis of a variety of industrially pertinent compounds such as resveratrol, muconic acid, gastrodin, xiamenmycin, and vanillyl alcohol using 4-HBA as the starting feedstock. Moreover, potential research activities with a close-up look at the future perspectives to produce new compounds using 4-HBA have also been discussed.

Keywords

4-Hydroxybenzoic acid Platform intermediate Synthetic biology Metabolic engineering Bioproducts 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Tooheng P, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74.  https://doi.org/10.1126/science.1191652 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bai Y, Bi H, Zhuang Y, Liu C, Cai T, Liu X, Zhang X, Liu T, Ma Y (2014) Production of salidroside in metabolically engineered Escherichia coli. Sci Rep 4(1):6640.  https://doi.org/10.1038/srep06640 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bai Y, Yin H, Bi H, Zhuang Y, Liu T, Ma Y (2016) De novo biosynthesis of gastrodin in Escherichia coli. Metab Eng 35:138–147.  https://doi.org/10.1016/j.ymben.2016.01.002 CrossRefPubMedGoogle Scholar
  4. Bang SG, Choi CY (1995) DO-stat fed-batch production of cis, cis-muconic acid from benzoic acid by Pseudomonas putida BM014. J Ferment Bioeng 79(4):381–383.  https://doi.org/10.1016/0922-338X(95)94001-8 CrossRefGoogle Scholar
  5. Barker JL, Frost JW (2001) Microbial synthesis of p-hydroxybenzoic acid from glucose. Biotechnol Bioeng 76(4):376–390.  https://doi.org/10.1002/bit.10160 CrossRefPubMedGoogle Scholar
  6. Bongaerts J, Kramer M, Muller U, Raeven L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3(4):289–300.  https://doi.org/10.1006/mben.2001.0196 CrossRefPubMedGoogle Scholar
  7. Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR (2010) Improved vanillin production in baker's yeast through in silico design. Microb Cell Factories 9(1):1–15CrossRefGoogle Scholar
  8. Bui V, Lau MK, Macrae D, Schweitzer D (2014) Methods for producing isomers of muconic acid and muconate salts. USGoogle Scholar
  9. Chen M, Cao H, Peng H, Hu H, Wang W, Zhang X (2014) Reaction kinetics for the biocatalytic conversion of phenazine-1-carboxylic acid to 2-hydroxyphenazine. PLoS One 9(6):e98537.  https://doi.org/10.1371/journal.pone.0098537 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen Z, Shen X, Wang J, Wang J, Yuan Q, Yan Y (2017a) Rational engineering of p-hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway. Biotechnol Bioeng 114(11):2571–2580.  https://doi.org/10.1002/bit.26364 CrossRefPubMedGoogle Scholar
  11. Chen Z, Shen X, Wang J, Wang J, Zhang R, Rey JF, Yuan Q, Yan Y (2017b) Establishing an artificial pathway for de novo biosynthesis of vanillyl alcohol in Escherichia coli. ACS Synth Biol 6(9):1784–1792CrossRefPubMedGoogle Scholar
  12. Cho JY, Moon JH, Seong KY, Park KH (1998) Antimicrobial activity of 4-hydroxybenzoic acid and trans 4-hydroxycinnamic acid isolated and identified from rice hull. Biosci Biotechnol Biochem 62(11):2273–2276.  https://doi.org/10.1271/bbb.62.2273 CrossRefPubMedGoogle Scholar
  13. Curran KA, Leavitt JM, Karim AS, Alper HS (2013) Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng 15(1):55–66.  https://doi.org/10.1016/j.ymben.2012.10.003 CrossRefPubMedGoogle Scholar
  14. De DNJ, Lee BH (2014) Enhanced production techniques, properties and uses of coenzyme Q10. Biotechnol Lett 36(10):1917–1926CrossRefGoogle Scholar
  15. Draths KM, Frost JW (1994) Environmentally compatible synthesis of adipic acid from D-glucose. J Am Chem Soc 116(1):2395–2400CrossRefGoogle Scholar
  16. Gavrilescu M (2014) Biomass potential for sustainable environment, Biorefinery Products and Energy. Springer International Publishing.  https://doi.org/10.1007/978-3-319-09707-7-13
  17. Gilbert K (2001) Plant secondary metabolism. David S. Seigler. Plant Growth Regul 34(1):149–149.  https://doi.org/10.1023/A:1013354907356 CrossRefGoogle Scholar
  18. Gonzálezmariscal I, Garcíatestón E, Padilla S, Martínmontalvo A, Pomares VT, Vazquezfonseca L, Gandolfo DP, Santosocaña C (2014) The regulation of coenzyme q biosynthesis in eukaryotic cells: all that yeast can tell us. Mol Syndromol 5(3–4):107–118.  https://doi.org/10.1159/000362897 CrossRefGoogle Scholar
  19. Hansen EH, Moller BL, Kock GR, Bunner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J (2015) De novo biosynthesis of vanillin in fission and baker's yeast. Appl Environ Microbiol 75(9):2765–2774CrossRefGoogle Scholar
  20. He A, Li T, Daniels L, Fotheringham I, Rosazza JP (2004) Nocardia sp. carboxylic acid reductase: cloning, expression, and characterization of a new aldehyde oxidoreductase family. Appl Environ Microbiol 70(3):1874–1881.  https://doi.org/10.1128/AEM.70.3.1874-1881.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hsieh CL, Chiang SY, Cheng KS, Lin YH, Tang NY, Lee CJ, Pon CZ, Hsieh CT (2001) Anticonvulsive and free radical scavenging activities of Gastrodia elata Bl. In kainic acid-treated rats. Am J Chin Med 29(2):331–341.  https://doi.org/10.1142/S0192415X01000356 CrossRefPubMedGoogle Scholar
  22. Hu H, Li Y, Liu K, Zhao J, Wang W, Zhang X (2017) Production of trans-2,3-dihydro-3-hydroxyanthranilic acid by engineered Pseudomonas chlororaphis GP72. Appl Microbiol Biotechnol 101(17):6607–6613.  https://doi.org/10.1007/s00253-017-8408-0 CrossRefPubMedGoogle Scholar
  23. Huang L, Chen MM, Wang W, Hu HB, Peng HS, Xu YQ, Zhang XH (2011) Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72. Appl Microbiol Biotechnol 89(1):169–177.  https://doi.org/10.1007/s00253-010-2863-1 CrossRefPubMedGoogle Scholar
  24. Ibeh CC (2011) Thermoplastic materials: properties, manufacturing methods, and applications. CRC Press, Boca RatonGoogle Scholar
  25. Jeya M, Moon HJ, Lee JL, Kim IW, Lee JK (2010) Current state of coenzyme Q production and its applications. Appl Microbiol Biotechnol 85(6):1653–1663.  https://doi.org/10.1007/s00253-009-2380-2 CrossRefPubMedGoogle Scholar
  26. Jin K, Zhou L, Jiang H, Sun S, Fang Y, Liu J, Zhang X, He YW (2015) Engineering the central biosynthetic and secondary metabolic pathways of Pseudomonas aeruginosa strain PA1201 to improve phenazine-1-carboxylic acid production. Metab Eng 32:30–38.  https://doi.org/10.1016/j.ymben.2015.09.003 CrossRefPubMedGoogle Scholar
  27. Jing D, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38(8):873–890.  https://doi.org/10.1007/s10295-011-0970-3 CrossRefGoogle Scholar
  28. Jung DH, Kim EJ, Jung E, Kazlauskas RJ, Choi KY, Kim BG (2016) Production of p-hydroxybenzoic acid from p-coumaric acid by Burkholderia glumae BGR1. Biotechnol Bioeng 113(7):1493–1503.  https://doi.org/10.1002/bit.25908 CrossRefPubMedGoogle Scholar
  29. Kallscheuer N, Vogt M, Kappelmann J, Krumbach K, Noack S, Bott M, Marienhagen J (2016a) Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 100(4):1871–1881.  https://doi.org/10.1007/s00253-015-7165-1 CrossRefPubMedGoogle Scholar
  30. Kallscheuer N, Vogt M, Stenzel A, Gätgens J, Bott M, Marienhagen J (2016b) Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metab Eng 38:47–55.  https://doi.org/10.1016/j.ymben.2016.06.003 CrossRefPubMedGoogle Scholar
  31. Kallscheuer N, Vogt M, Marienhagen J (2017) A novel synthetic pathway enables microbial production of polyphenols independent from the endogenous aromatic amino acid metabolism. ACS Synth Biol 6(3):410–415.  https://doi.org/10.1021/acssynbio.6b00291 CrossRefPubMedGoogle Scholar
  32. Kawamukai M (2002) Biosynthesis, bioproduction and novel roles of ubiquinone. J Biosci Bioeng 94(6):511–517.  https://doi.org/10.1016/S1389-1723(02)80188-8 CrossRefPubMedGoogle Scholar
  33. Kawamukai M (2015) Biosynthesis of coenzyme Q in eukaryotes. Biosci Biotechnol Biochem 80(1):23–33.  https://doi.org/10.1080/09168451.2015.1065172 PubMedGoogle Scholar
  34. Koopman F, Beekwilder J, Crimi B, Houwelingen AV, Hall RD, Bosch D, Maris AJV, Pronk JT, Daran JM (2012) De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Factories 11(1):155.  https://doi.org/10.1186/1475-2859-11-155 CrossRefGoogle Scholar
  35. Krömer JO, Nunez-Bernal D, Averesch NJH, Hampe J, Varela J, Varela C (2013) Production of aromatics in Saccharomyces cerevisiae—a feasibility study. J Biotechnol 163(2):184–193.  https://doi.org/10.1016/j.jbiotec.2012.04.014 CrossRefPubMedGoogle Scholar
  36. Lee SQ, Tan TS, Kawamukai M, Chen ES (2017) Cellular factories for coenzyme Q10 production. Microb Cell Factories 16(1):39.  https://doi.org/10.1186/s12934-017-0646-4 CrossRefGoogle Scholar
  37. Li Y, Jiang H, Du X, Huang X, Zhang X, Xu Y, Xu Y (2010) Enhancement of phenazine-1-carboxylic acid production using batch and fed-batch culture of gacA inactivated Pseudomonas sp. M18G. Bioresour Technol 101(10):3649–3656.  https://doi.org/10.1016/j.biortech.2009.12.120 CrossRefPubMedGoogle Scholar
  38. Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MAG (2011) High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol 77(10):3451–3460.  https://doi.org/10.1128/AEM.02186-10 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lin YW, Pan JH, Rui HL, Kuo YH, Sheen LY, Chiang BH (2010) The 4-acetylantroquinonol B isolated from mycelium of Antrodia cinnamomea inhibits proliferation of hepatoma cells. J Sci Food Agric 90(10):1739–1744.  https://doi.org/10.1002/jsfa.4010 CrossRefPubMedGoogle Scholar
  40. Lin Y, Sun X, Yuan Q, Yan Y (2014) Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli. Metab Eng 23:62–69.  https://doi.org/10.1016/j.ymben.2014.02.009 CrossRefPubMedGoogle Scholar
  41. Liu K, Hu H, Wang W, Zhang X (2016) Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-hydroxyphenazine. Microb Cell Factories 15(1):131.  https://doi.org/10.1186/s12934-016-0529-0 CrossRefGoogle Scholar
  42. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747CrossRefPubMedGoogle Scholar
  43. Mancuso M, Orsucci D, Volpi L, Calsolaro V, Siciliano G (2010) Coenzyme Q10 in neuromuscular and neurodegenerative disorders. Curr Drug Targets 11(1):111–121.  https://doi.org/10.2174/138945010790031018 CrossRefPubMedGoogle Scholar
  44. Meijnen JP, Verhoef S, Briedjlal AA, Winde JHD, Ruijssenaars HJ (2011) Improved p -hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy. Appl Microbiol Biotechnol 90(3):885–893.  https://doi.org/10.1007/s00253-011-3089-6 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nakagawa A, Minami H, Kim JS, Koyanagi T, Katayama T, Sato F, Kumagai H (2011) A bacterial platform for fermentative production of plant alkaloids. Nat Commun 2(2):326.  https://doi.org/10.1038/ncomms1327 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Noda S, Shirai T, Mori Y, Oyama S, Kondo A (2017) Engineering a synthetic pathway for maleate in Escherichia coli. Nat Commun 8(1):1153.  https://doi.org/10.1038/s41467-017-01233-9 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pfaff C, Glindemann N, Gruber J, Frentzen M, Sadre R (2014) Chorismate pyruvate-lyase and 4-hydroxy-3-solanesylbenzoate decarboxylase are required for plastoquinone biosynthesis in the cyanobacterium Synechocystis sp. PCC6803. J Biol Chem 289(5):2675–2686.  https://doi.org/10.1074/jbc.M113.511709 CrossRefPubMedGoogle Scholar
  48. Pierrel F (2017) Impact of chemical analogs of 4-hydroxybenzoic acid on coenzyme Q biosynthesis: from inhibition to bypass of coenzyme Q deficiency. Front Physiol 8:436.  https://doi.org/10.3389/fphys.2017.00436 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Qi F, Zou L, Jiang X, Cai S, Zhang M, Zhao X, Huang J (2017) Integration of heterologous 4-hydroxybenzoic acid transport proteins in Rhodobacter sphaeroides for enhancement of coenzyme Q10 production. RSC Adv 7(28):17346–17352.  https://doi.org/10.1039/C7RA02346D CrossRefGoogle Scholar
  50. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943.  https://doi.org/10.1038/nature04640 CrossRefPubMedGoogle Scholar
  51. Sengupta S, Jonnalagadda S, Goonewardena L, Juturu V (2015a) Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli. Appl Environ Microbiol 81(23):8037–8043.  https://doi.org/10.1128/AEM.01386-15 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sengupta S, Jonnalagadda S, Goonewardena L, Juturu V (2015b) Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli. Appl Environ Microbiol 81(23):8037–8043.  https://doi.org/10.1128/AEM.01386-15 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sharma A, Fonarow GC, Butler J, Ezekowitz JA, Felker GM (2016) Coenzyme Q10 and heart failure: a state-of-the-art review. Circ Heart Fail 9(4):e002639.  https://doi.org/10.1161/CIRCHEARTFAILURE.115.002639 CrossRefPubMedGoogle Scholar
  54. Shen X, Wang J, Wang J, Chen Z, Yuan Q, Yan Y (2017a) High-level de novo biosynthesis of arbutin in engineered Escherichia coli. Metab Eng 42:52–58.  https://doi.org/10.1016/j.ymben.2017.06.001 CrossRefPubMedGoogle Scholar
  55. Shen X, Wang Z, Huang X, Hu H, Wang W, Zhang X (2017b) Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites. BMC Genomics 18(1):715.  https://doi.org/10.1186/s12864-017-4127-2 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Siebert M, Severin K, Heide L (1994) Formation of 4-hydroxybenzoate in Escherichia coli: characterization of the ubiC gene and its encoded enzyme chorismate pyruvate-lyase. Microbiology 140((Pt 4)(1)):897–904CrossRefPubMedGoogle Scholar
  57. Spatafora C, Tringali C (2012) Natural-derived polyphenols as potential anticancer agents. Anticancer Agents Med Chem 12(8):902–918CrossRefPubMedGoogle Scholar
  58. Su Z, Chen H, Wang P, Tombosa S, Du L, Han Y, Shen Y, Qian G, Liu F (2017) 4-Hydroxybenzoic acid is a diffusible factor that connects metabolic shikimate pathway to the biosynthesis of a unique antifungal metabolite in Lysobacter enzymogenes. Mol Microbiol 104(1):163–178.  https://doi.org/10.1111/mmi.13619 CrossRefPubMedGoogle Scholar
  59. Summerenwesenhagen PVV, Marienhagen J (2015) Metabolic engineering of Escherichia coli for the synthesis of the plant polyphenol pinosylvin. Appl Environ Microbiol 81(3):840–849.  https://doi.org/10.1128/AEM.02966-14 CrossRefGoogle Scholar
  60. Sun X, Lin Y, Huang Q, Yuan Q, Yan Y (2013) A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate. Appl Environ Microbiol 79(13):4024–4030.  https://doi.org/10.1128/AEM.00859-13 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Suzanne V, Hendrik B, Volkers RJM, De WJH, Ruijssenaars HJ (2010) Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement. Appl Microbiol Biotechnol 87(2):679–690CrossRefGoogle Scholar
  62. Thodey K, Galanie S, Smolke CD (2014) A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat Chem Biol 10(10):837–844.  https://doi.org/10.1038/nchembio.1613 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Thompson B, Pugh S, Machas M, Nielsen DR (2017) Muconic acid production via alternative pathways and a synthetic ‘Metabolic Funnel’. ACS Synth Biol.  https://doi.org/10.1021/acssynbio.7b00331
  64. Tissier A, Ziegler J, Vogt T (2014) Specialized plant metabolites: diversity and biosynthesis. Wiley-VCH Verlag GmbH & Co KGaA. pp 14–37.  https://doi.org/10.1002/9783527686063.ch2
  65. Verhoef S, Ruijssenaars HJ, de Bont JA, Wery J (2007) Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. J Biotechnol 132(1):49–56.  https://doi.org/10.1016/j.jbiotec.2007.08.031 CrossRefPubMedGoogle Scholar
  66. Wang MW, Hao X, Chen K (2007) Biological screening of natural products and drug innovation in China. Philos Trans Biol Sci 362(1482):1093–1105.  https://doi.org/10.1098/rstb.2007.2036 CrossRefGoogle Scholar
  67. Weber C, Brückner C, Weinreb S, Lehr C, Essl C, Boles E (2012) Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl Environ Microbiol 78(23):8421–8430.  https://doi.org/10.1128/AEM.01983-12 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Xie N-Z, Liang H, Huang R-B, Xu P (2014) Biotechnological production of muconic acid: current status and future prospects. Biotechnol Adv 32(3):615–622.  https://doi.org/10.1016/j.biotechadv.2014.04.001 CrossRefPubMedGoogle Scholar
  69. Xu MJ, Liu XJ, Zhao YL, Liu D, Xu ZH, Lang XM, Ao P, Lin WH, Yang SL, Zhang ZG (2012) Identification and characterization of an anti-fibrotic benzopyran compound isolated from mangrove-derived Streptomyces xiamenensis. Mar Drugs 10(3):639–654.  https://doi.org/10.3390/md10030639 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yang Y, Fu L, Zhang J, Hu L, Xu M, Xu J (2014) Characterization of the xiamenmycin biosynthesis gene cluster in Streptomyces xiamenensis 318. PLoS One 9(6):e99537.  https://doi.org/10.1371/journal.pone.0099537 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yang S-H, Lin Y-W, Chiang B-H (2017) Biosynthesis of 4-acetylantroquinonol B in Antrodia cinnamomea via a pathway related to coenzyme Q synthesis. Biochem Eng J 117:23–29.  https://doi.org/10.1016/j.bej.2016.09.019 CrossRefGoogle Scholar
  72. Yoshida T, Nagasawa T (2007) Chapter 5–Biological Kolbe-Schmitt carboxylation: possible use of enzymes for the direct carboxylation of organic substrates. In: Future Directions in Biocatalysis. pp 83–105.  https://doi.org/10.1016/B978-044453059-2/50005-4
  73. Yu S, Plan MR, Winter G, Krömer JO (2016) Metabolic engineering of Pseudomonas putida KT2440 for the production of para-hydroxy benzoic acid. Front Bioeng Biotechnol 4:90PubMedPubMedCentralGoogle Scholar
  74. Zahiri HS, Yoon SHKeasling JD, Lee SH, Won KS, Yoon SC, Shin YC (2006) Coenzyme Q10 production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway. Metab Eng 8(5):406–416.  https://doi.org/10.1016/j.ymben.2006.05.002 CrossRefPubMedGoogle Scholar
  75. Zhang H, Pereira B, Li Z, Stephanopoulos G (2015) Engineering Escherichia coli coculture systems for the production of biochemical products. Proc Natl Acad Sci U S A 112(27):8266–8271.  https://doi.org/10.1073/pnas.1506781112 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhou J (1991) Bioactive glycosides from Chinese medicines. Mem Inst Oswaldo Cruz 86(Suppl 2):231–234.  https://doi.org/10.1590/S0074-02761991000600051 CrossRefPubMedGoogle Scholar
  77. Zhou L, Wang JY, Wu J, Wang J, Poplawsky A, Lin S, Zhu B, Chang C, Zhou T, Zhang LH, He YW (2013) The diffusible factor synthase XanB2 is a bifunctional chorismatase that links the shikimate pathway to ubiquinone and xanthomonadins biosynthetic pathways. Mol Microbiol 87(1):80–93.  https://doi.org/10.1111/mmi.12084 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Songwei Wang
    • 1
  • Muhammad Bilal
    • 1
  • Hongbo Hu
    • 1
  • Wei Wang
    • 1
  • Xuehong Zhang
    • 1
  1. 1.State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations