Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 6, pp 2525–2533 | Cite as

Damage to offshore production facilities by corrosive microbial biofilms

  • Adrien Vigneron
  • Ian M. Head
  • Nicolas Tsesmetzis
Mini-Review

Abstract

In offshore production facilities, large amounts of deaerated seawater are continuously injected to maintain pressure in oil reservoirs and equivalent volumes of fluids, composed of an oil/gas, and water mixture are produced. This process, brewing billions of liters of biphasic fluids particularly rich in microorganisms, goes through complex steel pipeline networks that are particularly prone to biofilm formation. Consequently, offshore facilities are frequently victims of severe microbiologically influenced corrosion. Understanding of microbiologically influenced corrosion is constantly growing. In the laboratory, the inventory of potentially corrosive microorganisms is increasing and microbial biochemical and bioelectrical processes are now recognized to be involved in corrosion. However, understanding of corrosive multispecies biofilms and the complex metabolic processes associated with corrosion remains a considerable challenge as simple laboratory biofilms comprising pure or defined mixed cultures poorly represent the complexity of in situ biofilms. Complementary, antagonistic, and parallel microbial pathways occur within the complex microbial and inorganic matrix of the biofilms which can lead to high corrosion rates. This mini-review explores models of microbiologically influenced corrosion and places them in the context of the multispecies biofilms observed in situ. Consequences of mitigation strategies on biofilm corrosiveness and dispersal are also discussed.

Keywords

MIC Corrosion Microbiologically influenced corrosion Biocorrosion Biofouling 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Al-Jaroudi SS, Ul-Hamid A, Al-Gahtani MM (2011) Failure of crude oil pipeline due to microbiologically induced corrosion. Corros Eng Sci Technol 46(4):568–579.  https://doi.org/10.1179/147842210X12695149033819 CrossRefGoogle Scholar
  2. Beech IB (2004) Corrosion of technical materials in the presence of biofilms—current understanding and state-of-the art methods of study. Int Biodeterior Biodegrad 53(3):177–183.  https://doi.org/10.1016/S0964-8305(03)00092-1 CrossRefGoogle Scholar
  3. Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15(3):181–186.  https://doi.org/10.1016/j.copbio.2004.05.001 CrossRefPubMedGoogle Scholar
  4. Beeder J, Andersen TR, Liengen T, Drønen K, Torsvik T (2007) Corrosion as a side effect during nitrate treatment of produced water and aquifer water injection. In: NACE-07512. NACE International, NACE. https://www.onepetro.org/conference-paper/NACE-07512
  5. Borenstein SW, Lindsay PB (1994) Mic failure analysis. Mater Perform U S 33:4Google Scholar
  6. Bryers JD, Characklis WG (1982) Processes governing primary biofilm formation. Biotechnol Bioeng 24(11):2451–2476.  https://doi.org/10.1002/bit.260241111 CrossRefPubMedGoogle Scholar
  7. Callbeck CM, Dong X, Chatterjee I, Agrawal A, Caffrey SM, Sensen CW, Voordouw G (2011) Microbial community succession in a bioreactor modeling a souring low-temperature oil reservoir subjected to nitrate injection. Appl Microbiol Biotechnol 91(3):799–810.  https://doi.org/10.1007/s00253-011-3287-2 CrossRefPubMedGoogle Scholar
  8. Coetser SE, Cloete TE (2005) Biofouling and biocorrosion in industrial water systems. Crit Rev Microbiol 31(4):213–232.  https://doi.org/10.1080/10408410500304074 CrossRefPubMedGoogle Scholar
  9. Cord-Ruwisch R (2000) Microbially influenced corrosion of steel. In: Environmental microbe-metal interactions. American Society of Microbiology (7):159–173.  https://doi.org/10.1128/9781555818098.ch7
  10. Cote C, Rosas O, Sztyler M, Doma J, Beech I, Basseguy R (2014) Corrosion of low carbon steel by microorganisms from the “pigging” operation debris in water injection pipelines. Biocorrosion 97:97–109Google Scholar
  11. Dang H, Lovell CR (2016) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80(1):91–138.  https://doi.org/10.1128/MMBR.00037-15 CrossRefPubMedGoogle Scholar
  12. Davidova IA, Duncan KE, Perez-Ibarra BM, Suflita JM (2012) Involvement of thermophilic archaea in the biocorrosion of oil pipelines. Environ Microbiol 14(7):1762–1771.  https://doi.org/10.1111/j.1462-2920.2012.02721.x CrossRefPubMedGoogle Scholar
  13. Deutzmann JS, Sahin M, Spormann AM (2015) Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. MBio 6Google Scholar
  14. Dinh HT, Kuever J, Muszmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427(6977):829–832.  https://doi.org/10.1038/nature02321 CrossRefPubMedGoogle Scholar
  15. Duan J, Wu S, Zhang X, Huang G, Du M, Hou B (2008) Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochim Acta 54(1):22–28.  https://doi.org/10.1016/j.electracta.2008.04.085
  16. Duncan KE, Gieg LM, Parisi VA, Tanner RS, Tringe SG, Bristow J, Suflita JM (2009) Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. Environ Sci Technol 43(20):7977–7984.  https://doi.org/10.1021/es9013932 CrossRefPubMedGoogle Scholar
  17. Duncan KE, Davidova IA, Nunn HS, Stamps BW, Stevenson BS, Souquet PJ, Suflita JM (2017) Design features of offshore oil production platforms influence their susceptibility to biocorrosion. Appl Microbiol Biotechnol 101(16):6517–6529.  https://doi.org/10.1007/s00253-017-8356-8 CrossRefPubMedGoogle Scholar
  18. Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80(4):1226–1236.  https://doi.org/10.1128/AEM.02848-13 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F (2012) Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol 14(7):1772–1787.  https://doi.org/10.1111/j.1462-2920.2012.02778.x CrossRefPubMedPubMedCentralGoogle Scholar
  20. Enning D, Smith R, Stolle J (2016) Evaluating the efficacy of weekly THPS and glutaraldehyde batch treatment to control severe microbial corrosion in a simulated seawater injection system. In: NACE-2016-7322. NACE international, NACE. https://www.onepetro.org/conference-paper/NACE-2016-7322
  21. Flemming H-C (1994) Microbial deterioration of materials: fundamentals, economical and technical overview. Mater Corros 45(1):5–9.  https://doi.org/10.1002/maco.19940450105 CrossRefGoogle Scholar
  22. Gittel A, Sørensen KB, Skovhus TL, Ingvorsen K, Schramm A (2009) Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment. Appl Environ Microbiol 75(22):7086–7096.  https://doi.org/10.1128/AEM.01123-09 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gittel A, Kofoed MVW, Sørensen KB, Ingvorsen K, Schramm A (2012) Succession of Deferribacteres and Epsilonproteobacteria through a nitrate-treated high-temperature oil production facility. Syst Appl Microbiol 35(3):165–174.  https://doi.org/10.1016/j.syapm.2012.01.003 CrossRefPubMedGoogle Scholar
  24. Gu T, Galicia B (2012) Can acid producing bacteria be responsible for very fast MIC pitting? In: NACE-2012-1214. NACE International, NACE. https://www.onepetro.org/conference-paper/NACE-2012-1214
  25. Hamilton WA, Lee W (1995) Biocorrosion. In: Barton LL (ed) Sulfate-reducing bacteria. Springer US, Boston, MA, pp 243–264.  https://doi.org/10.1007/978-1-4899-1582-5_9 CrossRefGoogle Scholar
  26. Haveman SA, DiDonato RJ, Villanueva L, Shelobolina ES, Postier BL, Xu B, Liu A, Lovley DR (2008) Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production. Appl Environ Microbiol 74(14):4277–4284.  https://doi.org/10.1128/AEM.02901-07 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hernández Gayosso M, Zavala Olivares G, Ruiz Ordaz N, Juárez Ramirez C, Garcia Esquivel R, Padilla Viveros A (2004) Microbial consortium influence upon steel corrosion rate, using polarisation resistance and electrochemical noise techniques. Electrochim Acta 49:4295–4301CrossRefGoogle Scholar
  28. Herrera LK, Videla HA (2009) Role of iron-reducing bacteria in corrosion and protection of carbon steel. 14th Int Biodeterior Biodegrad 63(7):891–895.  https://doi.org/10.1016/j.ibiod.2009.06.003 CrossRefGoogle Scholar
  29. Hubert C, Nemati M, Jenneman G, Voordouw G (2005) Corrosion risk associated with microbial souring control using nitrate or nitrite. Appl Microbiol Biotechnol 68(2):272–282.  https://doi.org/10.1007/s00253-005-1897-2 CrossRefPubMedGoogle Scholar
  30. Iino T, Ito K, Wakai S, Tsurumaru H, Ohkuma M, Harayama S (2015) Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Appl Environ Microbiol 81(5):1839–1846.  https://doi.org/10.1128/AEM.03741-14 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Iverson WP (1965) Direct evidence for the cathodic depolarization theory of bacterial corrosion. Science 151(3713):986–8.  https://doi.org/10.1126/science.151.3713.986
  32. Iverson WP (2001) Research on the mechanisms of anaerobic corrosion. Int Biodeter & Biodegr 47(2):63–70.  https://doi.org/10.1016/S0964-8305(00)00111-6
  33. Kato S (2016) Microbial extracellular electron transfer and its relevance to iron corrosion. Microb Biotechnol 9(2):141–148.  https://doi.org/10.1111/1751-7915.12340 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kato S, Yumoto I, Kamagata Y (2015) Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl Environ Microbiol 81(1):67–73.  https://doi.org/10.1128/AEM.02767-14 CrossRefPubMedGoogle Scholar
  35. Keresztes Z, Felhősi I, Kálmán E (2001) Role of redox properties of biofilms in corrosion processes. Electrochim Acta 46(24-25):3841–3849.  https://doi.org/10.1016/S0013-4686(01)00671-5 CrossRefGoogle Scholar
  36. Kielemoes J, De Boever P, Verstraete W (2000) Influence of denitrification on the corrosion of iron and stainless steel powder. Environ Sci Technol 34(4):663–671.  https://doi.org/10.1021/es9902930 CrossRefGoogle Scholar
  37. King RA, Miller JDA (1971) Corrosion by the sulphate-reducing bacteria. Nature 233(5320):491–492.  https://doi.org/10.1038/233491a0 CrossRefPubMedGoogle Scholar
  38. Kip N, van Veen JA (2015) The dual role of microbes in corrosion. ISME J 9(3):542–551.  https://doi.org/10.1038/ismej.2014.169 CrossRefPubMedGoogle Scholar
  39. Koch GH, Brongers MP, Thomson N, Virmanio Y, Payer JH (2005) Cost of corrosion in the United States. Handb Environ Degrad Mater 1:3–24.  https://doi.org/10.1016/B978-081551500-5.50003-3
  40. Koch GH, Varney J, Thompson NO, Moghissi O, Gould M, Payer JH (2016) NACE International IMPACT report 2016. https://impact.nace.org
  41. Kotu SP, Erbay C, Sobahi N, Han A, Mannan S, Jayaraman A (2016) Integration of electrochemical impedance spectroscopy and microfluidics for investigating microbially influenced corrosion using co-culture biofilms. In: NACE-2016-7793. NACE international, NACE. https://www.onepetro.org/conference-paper/NACE-2016-7793
  42. Kumar AS, Mody K (2009) Microbial exopolysaccharides: variety and potential applications. Microb Prod Biopolym Polym Precursors Appl Perspect 10:229–253Google Scholar
  43. Lahme S, Hubert C (2017) Corrosion risks associated with (bio) chemical processes in sour systems due to nitrate injection or oxygen ingress. In: Microbiologically influenced corrosion in the upstream oil and gas industry. Routledge, pp 87–110.  https://doi.org/10.1201/9781315157818-6
  44. Lee AK, Buehler MG, Newman DK (2006) Influence of a dual-species biofilm on the corrosion of mild steel. Corros Sci 48(1):165–178.  https://doi.org/10.1016/j.corsci.2004.11.013 CrossRefGoogle Scholar
  45. Lenhart TR, Duncan KE, Beech IB, Sunner JA, Smith W, Bonifay V, Biri B, Suflita JM (2014) Identification and characterization of microbial biofilm communities associated with corroded oil pipeline surfaces. Biofouling 30(7):823–835.  https://doi.org/10.1080/08927014.2014.931379 CrossRefPubMedGoogle Scholar
  46. Lewandowski Z (2000) MIC and biofilm heterogeneity. Proc Corros 400:1–7Google Scholar
  47. Liang B, Wang L-Y, Mbadinga SM, Liu J-F, Yang S-Z, Gu J-D, Mu B-Z (2015) Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5(1):37.  https://doi.org/10.1186/s13568-015-0117-4 CrossRefPubMedCentralGoogle Scholar
  48. Little BJ, Lee JS (2014) Microbiologically influenced corrosion: an update. Int Mater Rev 59(7):384–393.  https://doi.org/10.1179/1743280414Y.0000000035 CrossRefGoogle Scholar
  49. Lovley DR, Phillips EJ, Lonergan DJ, Widman PK (1995) Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61(6):2132–2138PubMedPubMedCentralGoogle Scholar
  50. Lyles CN, Le HM, Beasley WH, McInerney MJ, Suflita JM (2014) Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion. Front Microbiol 5:114CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mand J, Park HS, Okoro C, Lomans BP, Smith S, Chiejina L, Voordouw G (2015) Microbial methane production associated with carbon steel corrosion in a Nigerian oil field. Front Microbiol 6:1538PubMedGoogle Scholar
  52. Marietou A (2016) Nitrate reduction in sulfate-reducing bacteria. FEMS Microbiol Lett 363:fnw155CrossRefPubMedGoogle Scholar
  53. Moiseeva LS, Kondrova OV (2005) Biocorrosion of oil and gas field equipment and chemical methods for its suppression. I. Prot Met 41(4):385–393.  https://doi.org/10.1007/s11124-005-0054-8 CrossRefGoogle Scholar
  54. Morris BE, van der Kraan GM (2017) Application of biocides and chemical treatments to both combat microorganisms and reduce (bio) corrosion. Microbiol Influ Corros Upstream Oil Gas Ind 11:229-38.  https://doi.org/10.1201/9781315157818-12
  55. Nemati M, Jenneman GE, Voordouw G (2001) Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion. Biotechnol Prog 17(5):852–859.  https://doi.org/10.1021/bp010084v CrossRefPubMedGoogle Scholar
  56. Nešić S (2007) Key issues related to modelling of internal corrosion of oil and gas pipelines – a review. Corros Sci 49(12):4308–4338.  https://doi.org/10.1016/j.corsci.2007.06.006 CrossRefGoogle Scholar
  57. Okoro CC, Samuel O, Lin J (2016) The effects of Tetrakis-hydroxymethyl phosphonium sulfate (THPS), nitrite and sodium chloride on methanogenesis and corrosion rates by methanogen populations of corroded pipelines. Corros Sci 112:507–516CrossRefGoogle Scholar
  58. Ozuolmez D, Na H, Lever MA, Kjeldsen KU, Jørgensen BB, Plugge CM (2015) Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence? Front Microbiol 6:492Google Scholar
  59. Rao TS, Sairam TN, Viswanathan B, Nair KVK (2000) Carbon steel corrosion by iron oxidising and sulphate reducing bacteria in a freshwater cooling system. Corros Sci 42(8):1417–1431.  https://doi.org/10.1016/S0010-938X(99)00141-9 CrossRefGoogle Scholar
  60. Schmitt G (1991) Effect of elemental sulfur on corrosion in sour gas systems. Corrosion 47(4):285–308.  https://doi.org/10.5006/1.3585257 CrossRefGoogle Scholar
  61. Schwermer CU, Lavik G, Abed RMM, Dunsmore B, Ferdelman TG, Stoodley P, Gieseke A, de Beer D (2008) Impact of nitrate on the structure and function of bacterial biofilm communities in pipelines used for injection of seawater into oil fields. Appl Environ Microbiol 74(9):2841–2851.  https://doi.org/10.1128/AEM.02027-07 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sherar BWA, Power IM, Keech PG, Mitlin S, Southam G, Shoesmith DW (2011) Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion. Corros Sci 53:955–960CrossRefGoogle Scholar
  63. Stackebrandt E, Wehmeyer U, Schink B (1989) The phylogenetic status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus. Syst Appl Microbiol 11(3):257–260.  https://doi.org/10.1016/S0723-2020(89)80022-0 CrossRefGoogle Scholar
  64. Starosvetsky J, Starosvetsky D, Armon R (2007) Identification of microbiologically influenced corrosion (MIC) in industrial equipment failures. Pap Present Second Int Conf Eng Fail Anal Tor Can 14:1500–1511 12–15 Sept. 2006 Part IIGoogle Scholar
  65. Stetter KO, Gaag G (1983) Reduction of molecular sulphur by methanogenic bacteria. Nature 305(5932):309–311.  https://doi.org/10.1038/305309a0 CrossRefGoogle Scholar
  66. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147(1):3–9.  https://doi.org/10.1099/00221287-147-1-3 CrossRefPubMedGoogle Scholar
  67. Uchiyama T, Ito K, Mori K, Tsurumaru H, Harayama S (2010) Iron-corroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol 76(6):1783–1788.  https://doi.org/10.1128/AEM.00668-09 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Usher KM, Kaksonen AH, Cole I, Marney D (2014) Critical review: microbially influenced corrosion of buried carbon steel pipes. Int Biodeterior Biodegrad 93:84–106.  https://doi.org/10.1016/j.ibiod.2014.05.007 CrossRefGoogle Scholar
  69. Venzlaff H, Enning D, Srinivasan J, Mayrhofer KJJ, Hassel AW, Widdel F, Stratmann M (2013) Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci 66:88–96.  https://doi.org/10.1016/j.corsci.2012.09.006 CrossRefGoogle Scholar
  70. Videla HA (2002) Prevention and control of biocorrosion. Biodeterior Constr Mater 49:259–270Google Scholar
  71. Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol Off J Span Soc Microbiol 8:169–180Google Scholar
  72. Videla HA, Le Borgne S, Panter C, Singh Raman RK (2008) Mic of steels by iron reducing bacteria. In: NACE-08505. NACE international, NACE. https://www.onepetro.org/conference-paper/NACE-08505
  73. Vigneron A, Alsop EB, Chambers B, Lomans BP, Head IM, Tsesmetzis N (2016) Complementary microorganisms in highly corrosive biofilms from an offshore oil production facility. Appl Environ Microbiol 82(8):2545–2554.  https://doi.org/10.1128/AEM.03842-15 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Vigneron A, Alsop EB, Lomans BP, Kyrpides NC, Head IM, Tsesmetzis N (2017) Succession in the petroleum reservoir microbiome through an oil field production lifecycle. Isme J 11:2141CrossRefPubMedPubMedCentralGoogle Scholar
  75. Vik EA, Janbu AO, Garshol FK, Henninge LB, Engebretsen S, Kuijvenhoven C, Oilphant D, Hendriks WP (2007) Nitrate based souring mitigation of produced water - side effects and challenges from the Draugen produced water re-injection pilot. In: SPE-106178-MS. Society of Petroleum Engineers, SPE. https://www.onepetro.org/conference-paper/SPE-106178-MS
  76. Xu D, Gu T (2011) Bioenergetics explains when and why more severe MIC pitting by SRB can occur. In: NACE-2011-11426. NACE International, NACE.Google Scholar
  77. Xu D, Gu T (2014) Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int Biodeterior Biodegrad 91:74–81.  https://doi.org/10.1016/j.ibiod.2014.03.014 CrossRefGoogle Scholar
  78. Xu D, Li Y, Song F, Gu T (2013) Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corros Sci 77:385–390.  https://doi.org/10.1016/j.corsci.2013.07.044 CrossRefGoogle Scholar
  79. Zhang L, Wang X, Wen Z, Liu Z, Li X, Lu M (2012) Interactive effects of H2S and elemental sulfur on corrosion of steel. In: NACE-2012-1575. NACE International, NACE. https://www.onepetro.org/conference-paper/NACE-2012-1575
  80. Zhang P, Xu D, Li Y, Yang K, Gu T (2015) Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry 101:14–21.  https://doi.org/10.1016/j.bioelechem.2014.06.010 CrossRefPubMedGoogle Scholar
  81. Zuo R (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 76(6):1245–1253.  https://doi.org/10.1007/s00253-007-1130-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Civil Engineering and GeosciencesNewcastle UniversityNewcastle Upon TyneUK
  2. 2.Shell International Exploration and Production Inc.HoustonUSA

Personalised recommendations