Applied Microbiology and Biotechnology

, Volume 102, Issue 5, pp 2155–2165 | Cite as

Enzymatic synthesis of avermectin B1a glycosides for the effective prevention of the pine wood nematode Bursaphelenchus xylophilus

  • Ha-Young Choi
  • Nguyen Van Minh
  • Jae Min Choi
  • Jae Yoon Hwang
  • Sang-Tae Seo
  • Seung-Kyu Lee
  • Won-Gon KimEmail author
Biotechnological products and process engineering


Avermectin produced by Streptomyces avermitilis is an anti-nematodal agent against the pine wood nematode Bursaphelenchus xylophilus. However, its potential usage is limited by its poor water solubility. For this reason, continuous efforts are underway to produce new derivatives that are more water soluble. Here, the enzymatic glycosylation of avermectin was catalyzed by uridine diphosphate (UDP)-glycosyltransferase from Bacillus licheniformis with various UDP sugars. As a result, the following four avermectin B1a glycosides were produced: avermectin B1a 4″-β-d-glucoside, avermectin B1a 4″-β-d-galactoside, avermectin B1a 4″-β-l-fucoside, and avermectin B1a 4″-β-2-deoxy-d-glucoside. The avermectin B1a glycosides were structurally analyzed based on HR-ESI MS and 1D and 2D nuclear magnetic resonance spectra, and the anti-nematodal effect of avermectin B1a 4″-β-d-glucoside was found to exhibit the highest activity (IC50 = 0.23 μM), which was approximately 32 times greater than that of avermectin B1a (IC50 = 7.30 μM), followed by avermectin B1a 4″-β-2-deoxy-d-glucoside (IC50 = 0.69 μM), avermectin B1a 4″-β-l-fucoside (IC50 = 0.89 μM), and avermectin B1a 4″-β-d-galactoside (IC50 = 1.07 μM). These results show that glycosylation of avermectin B1a effectively enhances its in vitro anti-nematodal activity and that avermectin glycosides can be further applied for treating infestations of the pine wood nematode B. xylophilus.


Avermectin Enzymatic glycosylation Anti-nematodal Pine wood nematode Bursaphelenchus xylophilus 



This study was supported by grants from the National Institute of Forest Science (Project No. FE0702-2016-02) and the KRIBB Research Initiative Program, Republic of Korea.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animal performed by any of the authors.

Supplementary material

253_2018_8764_MOESM1_ESM.pdf (2 mb)
ESM 1 (PDF 2031 kb)


  1. Ahn BC, Kim BG, Jeon YM, Lee EJ, Lim Y, Ahn JH (2009) Formation of flavone di-O-glucosides using a glycosyltransferase from Bacillus cereus. J Microbiol Biotechnol 19(4):387–390. CrossRefPubMedGoogle Scholar
  2. Albers-Schönberg G, Arison B, Chabala J, Douglas A, Eskola P, Fisher MH, Lusi A, Mrozik H, Smith J, Tolman R (1981) Avermectins. structure determination. J Am Chem Soc 103(14):4216–4221. CrossRefGoogle Scholar
  3. Animati F, Berettoni M, Bigioni M, Binaschi M, Felicetti P, Gontrani L, Incani O, Madami A, Monteagudo E, Olivieri L, Resta S, Rossi C, Cipollone A (2008) Synthesis, biological evaluation, and molecular modeling studies of Rebeccamycin analogues modified in the carbohydrate moiety. ChemMedChem 3(2):266–279. CrossRefPubMedGoogle Scholar
  4. Balakshin MY, Capanema EA, Chen C-L, Gracz HS (2003) Elucidation of the structures of residual and dissolved pine kraft lignins using an HMQC NMR technique. J Agric Food Chem 51(21):6116–6127. CrossRefPubMedGoogle Scholar
  5. Bi Z, Gong Y, Huang X, Yu H, Bai L, Hu J (2015) Efficacy of four nematicides against the reproduction and development of pinewood nematode, Bursaphelenchus xylophilus. J Nematol 47(2):126–132PubMedPubMedCentralGoogle Scholar
  6. Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R, Kong Y-L, Monaghan RL, Olson G, Putter I, Tunac JB, Wallick H, Stapley EO, Oiwa R, Ōmura S (1979) Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother 15(3):361–367. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Campbell WC (2012) Ivermectin and abamectin. Springer, New YorkGoogle Scholar
  8. Capanema EA, Balakshin MY, Chen C-L, Gratzl JS, Gracz H (2001) Structural analysis of residual and technical lignins by 1H–13C correlation 2D NMR-spectroscopy. Holzforschung 55(3):302–308CrossRefGoogle Scholar
  9. Casida JE, Durkin KA (2015) Novel GABA receptor pesticide targets. Pestic Biochem Physiol 121:22–30. CrossRefPubMedGoogle Scholar
  10. Choi H-Y, Kim B-M, Morgan AMA, Kim JS, Kim W-G (2017) Improvement of the pharmacological activity of menthol via enzymatic β-anomer-selective glycosylation. AMB Express 7(1):167. CrossRefPubMedPubMedCentralGoogle Scholar
  11. de Roode BM, Franssen MC, Avd P, Boom RM (2003) Perspectives for the industrial enzymatic production of glycosides. Biotechnol Prog 19(5):1391–1402. CrossRefPubMedGoogle Scholar
  12. Egerton JR, Ostlind DA, Blair LS, Eary CH, Suhayda D, Cifelli S, Riek RF, Campbell WC (1979) Avermectins, new family of potent anthelmintic agents: efficacy of the B1a component. Antimicrob Agents Chemother 15(3):372–378. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Erb A, Weiß H, Härle J, Bechthold A (2009) A bacterial glycosyltransferase gene toolbox: generation and applications. Phytochemistry 70(15):1812–1821. CrossRefPubMedGoogle Scholar
  14. Fu X, Albermann C, Jiang J, Liao J, Zhang C, Thorson JS (2003) Antibiotic optimization via in vitro glycorandomization. Nat Biotechnol 21(12):1467–1469. CrossRefPubMedGoogle Scholar
  15. Hall D, Kim KH, De Luca V (2011) Molecular cloning and biochemical characterization of three concord grape (Vitis labrusca) flavonol 7-O-glucosyltransferases. Planta 234(6):1201–1214. CrossRefPubMedGoogle Scholar
  16. Hofer B (2016) Recent developments in the enzymatic O-glycosylation of flavonoids. Appl Microbiol Biotechnol 100(10):4269–4281. CrossRefPubMedGoogle Scholar
  17. Hyun MW, Kim JH, Suh DY, Lee SK, Kim SH (2007) Fungi isolated from pine wood nematode, its vector Japanese pine sawyer, and the nematode-infected Japanese black pine wood in Korea. Mycobiology 35(3):159–161. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jizba JV, Sedmera P, Přikrylová V, Vokoun J, Mikulík K, Vaněk Z (1989) New semisynthetic anthracycline glycosides. Collect Czechoslov Chem Commun 54(4):1104–1117. CrossRefGoogle Scholar
  19. Koirala N, Pandey RP, Parajuli P, Jung HJ, Sohng JK (2014) Methylation and subsequent glycosylation of 7,8-dihydroxyflavone. J Biotechnol 184:128–137. CrossRefPubMedGoogle Scholar
  20. Krauth C, Fedoryshyn M, Schleberger C, Luzhetskyy A, Bechthold A (2009) Engineering a function into a glycosyltransferase. Chem Biol 16(1):28–35CrossRefPubMedGoogle Scholar
  21. Langenhan JM, Griffith BR, Thorson JS (2005) Neoglycorandomization and chemoenzymatic glycorandomization: two complementary tools for natural product diversification. J Nat Prod 68(11):1696–1711. CrossRefPubMedGoogle Scholar
  22. Li Y, Qin Y, Liu S, Xing R, Yu H, Li K, Li P (2016) Preparation, characterization, and insecticidal activity of avermectin-grafted-carboxymethyl chitosan. Biomed Res Int 2016Google Scholar
  23. Mandai T, Okumoto H, Oshitari T (2001) Synthesis and biological evaluation of water soluble taxoids bearing sugar moieties. Heterocycles 54(2):561–566CrossRefGoogle Scholar
  24. Mrozik H, Linn BO, Eskola P, Lusi A, Matzuk A, Preiser FA, Ostlind DA, Schaeffer JM, Fisher MH (1989) Syntheses and biological activities of 13-substituted avermectin aglycons. J Med Chem 32(2):375–381. CrossRefPubMedGoogle Scholar
  25. Nagarajan R (1993) Structure–activity relationships of vancomycin-type glycopeptide antibiotics. J Antibiot (Tokyo) 46(8):1181–1195. CrossRefGoogle Scholar
  26. Nickle WR, Golden AM, Mamiya Y, Wergin WP (1981) On the taxonomy and morphology of the pine wood nematode, Bursaphelenchus xylophilus (Steiner & Buhrer 1934) Nickle 1970. J Nematol 13(3):385–392PubMedPubMedCentralGoogle Scholar
  27. Nicolaou K, Dolle R, Papahatjis D (1984) Practical synthesis of oligosaccharides. Partial synthesis of avermectin B1a. J Am Chem Soc 106(15):4189–4192CrossRefGoogle Scholar
  28. Oh W-S, Jeong P-Y, Joo H-J, Lee J-E, Moon Y-S, Cheon H-M, Kim J-H, Lee Y-U, Shim Y-H, Paik Y-K (2009) Identification and characterization of a dual-acting antinematodal agent against the pinewood nematode, Bursaphelenchus xylophilus. PLoS One 4(11):e7593. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ostlind D, Cifelli S, Lang R (1979) Insecticidal activity of the anti-parasitic avermectins. Vet Rec 105(8):168–168. CrossRefPubMedGoogle Scholar
  30. Pandey RP, Li TF, Kim EH, Yamaguchi T, Park YI, Kim JS, Sohng JK (2013) Enzymatic synthesis of novel phloretin glucosides. Appl Environ Microbiol 79(11):3516–3521. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Parajuli P, Pandey RP, Koirala N, Yoon YJ, Kim B-G, Sohng JK (2014) Enzymatic synthesis of epothilone a glycosides. AMB Express 4(1):31–31. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Putter I, Connell JGM, Preiser FA, Haidri AA, Ristich SS, Dybas RA (1981) Avermectins: novel insecticides, acaricides and nematicides from a soil microorganism. Experientia 37(9):963–964. CrossRefGoogle Scholar
  33. Rabausch U, Juergensen J, Ilmberger N, Bohnke S, Fischer S, Schubach B, Schulte M, Streit WR (2013) Functional screening of metagenome and genome libraries for detection of novel flavonoid-modifying enzymes. Appl Environ Microbiol 79(15):4551–4563. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rajasekharan SK, Lee J-H, Ravichandran V, Lee J (2017) Assessments of iodoindoles and abamectin as inducers of methuosis in pinewood nematode, Bursaphelenchus xylophilus. Sci Rep 7(1):6803. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Schulman M, Doherty P, Arison B (1993) Microbial conversion of avermectins by Saccharopolyspora erythraea: glycosylation at C-4′ and C-4″. Antimicrob Agents Chemother 37(9):1737–1741. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Song MC, Kim E, Ban YH, Yoo YJ, Kim EJ, Park SR, Pandey RP, Sohng JK, Yoon YJ (2013) Achievements and impacts of glycosylation reactions involved in natural product biosynthesis in prokaryotes. Appl Microbiol Biotechnol 97(13):5691–5704. CrossRefPubMedGoogle Scholar
  37. Weymouth-Wilson AC (1997) The role of carbohydrates in biologically active natural products. Nat Prod Rep 14(2):99–110. CrossRefPubMedGoogle Scholar
  38. Williams DH (1996) The glycopeptide story—how to kill the deadly ‘superbugs’. Nat Prod Rep 13(6):469–477. CrossRefPubMedGoogle Scholar
  39. Wu C-Z, Jang J-H, Woo M, Ahn JS, Kim JS, Hong Y-S (2012) Enzymatic glycosylation of nonbenzoquinone geldanamycin analogs via Bacillus UDP-glycosyltransferase. Appl Environ Microbiol 78(21):7680–7686. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zhou M, Hamza A, Zhan C-G, Thorson JS (2013) Assessing the regioselectivity of OleD-catalyzed glycosylation with a diverse set of acceptors. J Nat Prod 76(2):279–286. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ha-Young Choi
    • 1
    • 2
  • Nguyen Van Minh
    • 1
  • Jae Min Choi
    • 1
  • Jae Yoon Hwang
    • 1
  • Sang-Tae Seo
    • 3
  • Seung-Kyu Lee
    • 3
  • Won-Gon Kim
    • 1
    Email author
  1. 1.Superbacteria Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
  2. 2.Department of Bio-Molecular Science, KRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonRepublic of Korea
  3. 3.Division of Forest Insect Pests and DiseasesNational Institute of Forest ScienceSeoulRepublic of Korea

Personalised recommendations