Advertisement

Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives

  • Shahia Khattak
  • Fazli Wahid
  • Ling-Pu Liu
  • Shi-Ru Jia
  • Li-Qiang Chu
  • Yan-Yan Xie
  • Zi-Xuan Li
  • Cheng ZhongEmail author
Mini-Review
  • 156 Downloads

Abstract

The bacterial infections have always a serious problem to public health. Scientists are developing new antibacterial materials to overcome this problem. Polysaccharides are promising biopolymers due to their diverse biological functions, low toxicity, and high biodegradability. Chitin and chitosan have antibacterial properties due to their cationic nature, while cellulose/bacterial cellulose does not possess any antibacterial activity. Moreover, the insolubility of chitin in common solvents, the poor solubility of chitosan in water, and the low mechanical properties of chitosan have restricted their biomedical applications. In order to solve these problems, chemical modifications such as quaternization, carboxymethylation, cationization, or surface modification of these polymers with different antimicrobial agents, including metal and metal oxide nanoparticles, are carried out to obtain new materials with improved physiochemical and biological properties. This mini review describes the recent progress in such derivatives and composites with potential antibacterial applications.

Keywords

Chitin/chitosan Cellulose Derivatives Composites Antibacterial applications 

Notes

Funding

This work was funded by the National Natural Science Foundation of China (no. 31470610 and no. 21576212), Natural Science Foundation of Tianjin (17YFZCSF01120 and 18PTSYJC00140), and the Youth Innovation Foundation of Tibet (no. QC2015-27).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abdel-Mohsen AM, Abdel-Rahman RM, Hrdina R, Imramovský A, Burgert L, Aly AS (2012a) Antibacterial cotton fabrics treated with core-shell nanoparticles. Int J Biol Macromol 50(5):1245–1253.  https://doi.org/10.1016/j.ijbiomac.2012.03.018 CrossRefPubMedGoogle Scholar
  2. Abdel-Mohsen AM, Aly AS, Hrdina R, Montaser AS, Hebeish A (2012b) Biomedical textiles through multifunctioalization of cotton fabrics using innovative methoxypolyethylene glycol-N-chitosan graft copolymer. J Polym Environ 20(1):104–116.  https://doi.org/10.1007/s10924-011-0356-7 CrossRefGoogle Scholar
  3. Adibzadeh S, Bazgir S, Katbab AA (2014) Fabrication and characterization of chitosan/poly(vinyl alcohol) electrospun nanofibrous membranes containing silver nanoparticles for antibacterial water filtration. Iran Polym J 23(8):645–654.  https://doi.org/10.1007/s13726-014-0258-3 CrossRefGoogle Scholar
  4. Afzal MZ, Sun XF, Liu J, Song C, Wang SG, Javed A (2018) Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads. Sci Total Environ 639:560–569.  https://doi.org/10.1016/j.scitotenv.2018.05.129 CrossRefPubMedGoogle Scholar
  5. Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109.  https://doi.org/10.1016/j.ijbiomac.2017.08.140 CrossRefPubMedGoogle Scholar
  6. Ak HPS, Saurabh CK, AS A, Nurul Fazita MR, Syakir MI, Davoudpour Y, Rafatullah M, Abdullah CK, Mk MH, Dungani R (2016) A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohydr Polym 150:216–226.  https://doi.org/10.1016/j.carbpol.2016.05.028 CrossRefGoogle Scholar
  7. Akil HM, Omar MF, Mazuki AAM, Safiee S, Ishak ZAM, Bakar AA (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8):4107–4121.  https://doi.org/10.1016/j.matdes.2011.04.008 CrossRefGoogle Scholar
  8. Ali A, Ahmed S (2017) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286.  https://doi.org/10.1016/j.ijbiomac.2017.12.078 CrossRefPubMedGoogle Scholar
  9. Ali SA, Singh RP (2010) Synthesis and characterization of a modified chitosan. Macromol Symp 277(1):1–7.  https://doi.org/10.1002/masy.200950301 CrossRefGoogle Scholar
  10. Al-Naamani L, Dobretsov S, Dutta J (2016) Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol 38:231–237.  https://doi.org/10.1016/j.ifset.2016.10.010 CrossRefGoogle Scholar
  11. Alvarenga ESD, Oliveira CPD, Bellato CR (2010) An approach to understanding the deacetylation degree of chitosan. Carbohydr Polym 80(4):1155–1160.  https://doi.org/10.1016/j.carbpol.2010.01.037 CrossRefGoogle Scholar
  12. Andresen M, Stenstad P, Møretrø T, Langsrud S, Syverud K, Johansson LS, Stenius P (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8(7):2149–2155.  https://doi.org/10.1021/bm070304e CrossRefPubMedGoogle Scholar
  13. Anitha S, Brabu B, John TD, Gopalakrishnan C, Natarajan TS (2012) Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydr Polym 87(2):1065–1072.  https://doi.org/10.1016/j.carbpol.2013.05.003 CrossRefGoogle Scholar
  14. Anitha A, Sowmya S, Kumar PTS, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39(9):1644–1667.  https://doi.org/10.1016/j.progpolymsci.2014.02.008 CrossRefGoogle Scholar
  15. Arora D, Sharma N, Sharma V, Abrol V, Shankar R, Jaglan S (2016) An update on polysaccharide-based nanomaterials for antimicrobial applications. Appl Microbiol Biotechnol 100(6):1–13.  https://doi.org/10.1007/s00253-016-7315-0 CrossRefGoogle Scholar
  16. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA (2013) Synthesis, antibacterial and thermal studies of cellulose nanocrystal stabilized ZnO-Ag heterostructure nanoparticles. Molecules 18(6):6269–6280.  https://doi.org/10.3390/molecules18066269 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Azizi S, Ahmad MB, Ibrahim NA, Hussein MZ, Namvar F (2014) Cellulose nanocrystals/ZnO as a bifunctional reinforcing nanocomposite for poly(vinyl alcohol)/chitosan blend films: fabrication, characterization and properties. Int J Mol Sci 15(6):11040.  https://doi.org/10.3390/ijms150611040 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bano I, Ghauri MA, Yasin T, Huang Q, Palaparthi ADS (2014) Characterization and potential applications of gamma irradiated chitosan and its blends with poly(vinyl alcohol). Int J Biol Macromol 65:81–88.  https://doi.org/10.1016/j.ijbiomac.2014.01.015 CrossRefPubMedGoogle Scholar
  19. Bano I, Arshad M, Yasin T, Ghauri MA, Younus M (2017) Chitosan: a potential biopolymer for wound management. Int J Biol Macromol 102:380–383.  https://doi.org/10.1016/j.ijbiomac.2017.04.047 CrossRefPubMedGoogle Scholar
  20. Behera SS, Das U, Kumar A, Bissoyi A, Singh AK (2017) Chitosan/TiO2 composite membrane improves proliferation and survival of L929 fibroblast cells: application in wound dressing and skin regeneration. Int J Biol Macromol 98:329–340.  https://doi.org/10.1016/j.ijbiomac.2017.02.017 CrossRefPubMedGoogle Scholar
  21. Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29(1):48–56.  https://doi.org/10.1016/j.foodhyd.2012.02.013 CrossRefGoogle Scholar
  22. Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65(8):385.  https://doi.org/10.1038/ja.2012.27 CrossRefPubMedGoogle Scholar
  23. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250.  https://doi.org/10.1038/nrmicro1098 CrossRefPubMedGoogle Scholar
  24. Busilacchi A, Gigante A, Mattiolibelmonte M, Manzotti S, Muzzarelli RA (2013) Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr Polym 98(1):665–676.  https://doi.org/10.1016/j.carbpol.2013.06.044 CrossRefPubMedGoogle Scholar
  25. Cao X, Ding B, Yu J, Al-Deyab SS (2013) In situ growth of silver nanoparticles on TEMPO-oxidized jute fibers by microwave heating. Carbohydr Polym 92(1):571–576.  https://doi.org/10.1016/j.carbpol.2012.08.091 CrossRefPubMedGoogle Scholar
  26. Chakravarty J, Rabbi MF, Bach N, Chalivendra V, Yang CL, Brigham CJ (2018) Fabrication of porous chitin membrane using ionic liquid and subsequent characterization and modelling studies. Carbohydr Polym 198:443–451.  https://doi.org/10.1016/j.carbpol.2018.06.101 CrossRefPubMedGoogle Scholar
  27. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53.  https://doi.org/10.1016/j.carbpol.2010.12.023 CrossRefGoogle Scholar
  28. Chaoming S, Yeongtarng S, Yawokuo T (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78(1):169–174.  https://doi.org/10.1016/j.carbpol.2009.04.031 CrossRefGoogle Scholar
  29. Chen Q, Wu Y, Pu Y, Zheng Z, Shi C, Huang X (2010) Synthesis and characterization of quaternized beta-chitin. Carbohydr Res 345(11):1609.  https://doi.org/10.1016/j.carres.2010.05.014 CrossRefPubMedGoogle Scholar
  30. Dehnad D, Mirzaei H, Emamdjomeh Z, Jafari SM, Dadashi S (2014) Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydr Polym 109(6):148–154.  https://doi.org/10.1016/j.carbpol.2014.03.063 CrossRefPubMedGoogle Scholar
  31. Dev A, Mohan JC, Sreeja V, Tamura H, Patzke GR, Hussain F, Weyeneth S, Nair SV, Jayakumar R (2010) Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydr Polym 79(4):1073–1079.  https://doi.org/10.1016/j.carbpol.2009.10.038 CrossRefGoogle Scholar
  32. Dhanavel S, Manivannan N, Mathivanan N, Gupta VK, Narayanan V, Stephen A (2018) Preparation and characterization of cross-linked chitosan/palladium nanocomposites for catalytic and antibacterial activity. J Mol Liq 257:32–41.  https://doi.org/10.1016/j.molliq.2018.02.076 CrossRefGoogle Scholar
  33. Dick P, Jankowicz D (2016) Binding cellulose and chitosan via intermolecular inclusion interaction: synthesis and characterisation of gel. J Spectrosc 2015(22):1–6.  https://doi.org/10.1155/2015/179258 CrossRefGoogle Scholar
  34. Díez-Pascual AM, Díez-Vicente AL (2015) Wound healing bionanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZnO nanoparticles. Biomacromolecules 16(9):2631–2644.  https://doi.org/10.1021/acs.biomac.5b00447 CrossRefPubMedGoogle Scholar
  35. Ding F, Shi X, Li X, Cai J, Duan B, Du Y (2012) Homogeneous synthesis and characterization of quaternized chitin in NaOH/urea aqueous solution. Carbohydr Polym 87(1):422–426.  https://doi.org/10.1016/j.carbpol.2011.07.069 CrossRefGoogle Scholar
  36. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mat Sci Eng C-Mater 44(44):278–284.  https://doi.org/10.1016/j.msec.2014.08.031 CrossRefGoogle Scholar
  37. Dobre LM, Stroescu M, Jipa IM, Dobre T, Ferdeş M, Ciumpiliac Ş (2012) Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films. Chem Pap 66(2):144–151.  https://doi.org/10.2478/s11696-011-0086-2 CrossRefGoogle Scholar
  38. Dobrovolskaya IP, Yudin VE, Popryadukhin PV, Ivan’Kova EM, Shabunin AS, Kasatkin IA, Morgantie P (2018) Effect of chitin nanofibrils on electrospinning of chitosan-based composite nanofibers. Carbohydr Polym 194:260–266.  https://doi.org/10.1016/j.carbpol.2018.03.074 CrossRefPubMedGoogle Scholar
  39. Duan B, Huang Y, Lu A, Zhang L (2018a) Recent advances in chitin based materials constructed via physical methods. Prog Polym Sci 82:1–33.  https://doi.org/10.1016/j.progpolymsci.2018.04.001 CrossRefGoogle Scholar
  40. Duan C, Meng J, Wang X, Meng X, Sun X, Xu Y, Zhao W, Ni Y (2018b) Synthesis of novel cellulose-based antibacterial composites of Ag nanoparticles@ metal-organic frameworks@ carboxymethylated fibers. Carbohydr Polym 193:82–88.  https://doi.org/10.1016/j.carbpol.2018.03.089 CrossRefPubMedGoogle Scholar
  41. El Knidri H, Belaabed R, Addaou A, Laajeb A, Lahsini A (2018) Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol Macromol 120:1181–1189.  https://doi.org/10.1016/j.ijbiomac.2018.08.139 CrossRefPubMedGoogle Scholar
  42. Elayaraja S, Zagorsek K, Li F, Xiang J (2017) In situ synthesis of silver nanoparticles into TEMPO-mediated oxidized bacterial cellulose and their antivibriocidal activity against shrimp pathogens. Carbohydr Polym 166:329–337.  https://doi.org/10.1016/j.carbpol.2017.02.093 CrossRefPubMedGoogle Scholar
  43. Errokh A, Ferraria AM, Conceição DS, Vieira Ferreira LF, Am BDR, Rei VM, Boufi S (2016) Controlled growth of Cu2O nanoparticles bound to cotton fibres. Carbohydr Polym 141:229–237.  https://doi.org/10.1016/j.carbpol.2016.01.019 CrossRefPubMedGoogle Scholar
  44. Fan LH, Cheng J, Qin SQ (2009) Carboxymethyl chitosan and its application. Environ Sci Technol 32(11):84–87Google Scholar
  45. Farhoudian S, Yadollahi M, Namazi H (2016) Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads. Int J Biol Macromol 82:837–843.  https://doi.org/10.1016/j.ijbiomac.2015.10.018 CrossRefPubMedGoogle Scholar
  46. Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA (2011) Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules 12(10):3528–3539.  https://doi.org/10.1021/bm200718s CrossRefPubMedGoogle Scholar
  47. Fei P, Liao L, Meng J, Cheng B, Hu X, Song J (2018) Non-leaching antibacterial cellulose triacetate reverse osmosis membrane via covalent immobilization of quaternary ammonium cations. Carbohydr Polym 181:1102–1111.  https://doi.org/10.1016/j.carbpol.2017.11.036 CrossRefPubMedGoogle Scholar
  48. Fernandes SC, Sadocco P, Alonsovarona A, Palomares T, Eceiza A, Silvestre AJ, Mondragon I, Freire CS (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5(8):3290–3297.  https://doi.org/10.1021/am400338n CrossRefPubMedGoogle Scholar
  49. Follmann HD, Martins AF, Gerola AP, Burgo TA, Nakamura CV, Rubira AF, Muniz EC (2012) Antiadhesive and antibacterial multilayer films via layer-by-layer assembly of TMC/heparin complexes. Biomacromolecules 13(11):3711–3722.  https://doi.org/10.1021/bm3011962 CrossRefPubMedGoogle Scholar
  50. Foresti ML, Vazquez A, Boury B (2016) Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr Polym 157:447–467.  https://doi.org/10.1016/j.carbpol.2016.09.008 CrossRefPubMedGoogle Scholar
  51. Fu J, Ji J, Yuan W, Shen J (2005) Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials 26(33):6684–6692.  https://doi.org/10.1016/j.biomaterials.2005.04.034 CrossRefPubMedGoogle Scholar
  52. Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92(2):1432–1442.  https://doi.org/10.1016/j.carbpol.2012.10.071 CrossRefPubMedGoogle Scholar
  53. Fu F, Gu J, Xu X, Xiong Q, Zhang Y, Liu X, Zhou J (2016) Interfacial assembly of ZnO–cellulose nanocomposite films via a solution process: a one-step biomimetic approach and excellent photocatalytic properties. Cellulose: 1–16 doi: https://doi.org/10.1007/s10570-016-1087-7
  54. Fu F, Gu J, Zhang R, Xu X, Yu X, Liu L, Liu X, Zhou J, Yao J (2018) Three-dimensional cellulose based silver-functionalized ZnO nanocomposite with controlled geometry: synthesis, characterization and properties. J Colloid Interface Sci 530:433–443.  https://doi.org/10.1016/j.jcis.2018.07.009 CrossRefPubMedGoogle Scholar
  55. Gabriel JS, Vam G, Poli AL, Schmitt CC (2017) Photochemical synthesis of silver nanoparticles on chitosans/montmorillonite nanocomposite films and antibacterial activity. Carbohydr Polym 171:202–210.  https://doi.org/10.1016/j.carbpol.2017.05.021 CrossRefPubMedGoogle Scholar
  56. García A, Gandini A, Labidi J, Belgacem N, Bras J (2016) Industrial and crop wastes: a new source for nanocellulose biorefinery. Ind Crop Prod 93:26–38.  https://doi.org/10.1016/j.indcrop.2016.06.004 CrossRefGoogle Scholar
  57. Gayathri NK, Aparna V, Maya S, Biswas R, Jayakumar R, Mohan CG (2017) Preparation, characterization, drug release and computational modelling studies of antibiotics loaded amorphous chitin nanoparticles. Carbohydr Polym 177:67–76.  https://doi.org/10.1016/j.carbpol.2017.08.112 CrossRefPubMedGoogle Scholar
  58. Gonçalves G, Marques PAAP, Neto CP, Trindade T, Peres M, Monteiro T (2009) Growth, structural, and optical characterization of ZnO-coatedcellulosic fibers. Cryst Growth Des 9(9):386–390.  https://doi.org/10.1021/cg800596z CrossRefGoogle Scholar
  59. Hassan EA, Hassan ML (2016) Rice straw nanofibrillated cellulose films with antimicrobial properties via supramolecular route. Ind Crop Prod 93:142–151.  https://doi.org/10.1016/j.indcrop.2016.02.025 CrossRefGoogle Scholar
  60. Hassanpour A, Asghari S, Lakouraj MM (2017) Synthesis, characterization and antibacterial evaluation of nanofibrillated cellulose grafted by a novel quinolinium silane salt. RSC Adv 7(39):23907–23916.  https://doi.org/10.1039/C7RA02765F CrossRefGoogle Scholar
  61. Hassanpour A, Asghari S, Mansour LM, Mohseni M (2018) Preparation and characterization of contact active antibacterial surface based on chemically modified nanofibrillated cellulose by phenanthridinium silane salt. Int J Biol Macromol 115:528–539.  https://doi.org/10.1016/j.ijbiomac.2018.03.141 CrossRefPubMedGoogle Scholar
  62. He G, Wang Z, Zheng H, Yin Y, Xiong X, Lin R (2012) Preparation, characterization and properties of aminoethyl chitin hydrogels. Carbohydr Polym 90(4):1614–1619.  https://doi.org/10.1016/j.carbpol.2012.07.040 CrossRefPubMedGoogle Scholar
  63. Hg DOB, Da SR, Da SBH, Tercjak A, Gutierrez J, Lustri WR, Junior DOO, Ribeiro SJ (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420.  https://doi.org/10.1016/j.carbpol.2016.07.059 CrossRefGoogle Scholar
  64. Hoeng F, Denneulin A, Neuman C, Bras J (2015) Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation. J Nanopart Res 17(6):1–14.  https://doi.org/10.1007/s11051-015-3044-z CrossRefGoogle Scholar
  65. Hu W, Chen S, Zhou B, Wang H (2010) Facile synthesis of ZnO nanoparticles based on bacterial cellulose. Mater Sci Eng B 170(1):88–92.  https://doi.org/10.1016/j.mseb.2010.02.034 CrossRefGoogle Scholar
  66. Hu D, Wang H, Wang L (2016) Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. LWT - Food Sci and Technol 65:398–405.  https://doi.org/10.1016/j.lwt.2015.08.033 CrossRefGoogle Scholar
  67. Huang HF, Peng CF (2015) Antibacterial and antifungal activity of alkylsulfonated chitosan. Biomark Genom Med 7(2):83–86.  https://doi.org/10.1016/j.bgm.2014.09.001 CrossRefGoogle Scholar
  68. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145.  https://doi.org/10.1016/j.jconrel.2011.07.002 CrossRefPubMedGoogle Scholar
  69. Ifuku S, Tsukiyama Y, Yukawa T, Egusa M, Kaminaka H, Izawa H, Morimoto M, Saimoto H (2015) Facile preparation of silver nanoparticles immobilized on chitin nanofiber surfaces to endow antifungal activities. Carbohydr Polym 117:813–817.  https://doi.org/10.1016/j.carbpol.2014.10.042 CrossRefPubMedGoogle Scholar
  70. Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98(3):1001–1009.  https://doi.org/10.1007/s00253-013-5422-8 CrossRefPubMedGoogle Scholar
  71. Jahed E, Khaledabad MA, Almasi H, Hasanzadeh R (2017) Physicochemical properties of Carum copticum essential oil loaded chitosan films containing organic nanoreinforcements. Carbohydr Polym 164:325–338.  https://doi.org/10.1016/j.carbpol.2017.02.022 CrossRefPubMedGoogle Scholar
  72. Janpetch N, Saito N, Rujiravanit R (2016) Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydr Polym 148:335–344.  https://doi.org/10.1016/j.carbpol.2016.04.066 CrossRefPubMedGoogle Scholar
  73. Jatoi AW, Kim IS, Ni Q-Q (2019) Cellulose acetate nanofibers embedded with AgNPs anchored TiO2 nanoparticles for long term excellent antibacterial applications. Carbohydr Polym 207:640–649.  https://doi.org/10.1016/j.carbpol.2018.12.029 CrossRefPubMedGoogle Scholar
  74. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010a) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82(2):227–232.  https://doi.org/10.1016/j.carbpol.2010.04.074 CrossRefGoogle Scholar
  75. Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N (2010b) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci 55(7):675–709.  https://doi.org/10.1016/j.pmatsci.2010.03.001 CrossRefGoogle Scholar
  76. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337.  https://doi.org/10.1016/j.biotechadv.2011.01.005 CrossRefPubMedGoogle Scholar
  77. Jia B, Mei Y, Cheng L, Zhou J, Zhang L (2012) Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl Mater Interfaces 4(6):2897–2902.  https://doi.org/10.1021/am3007609 CrossRefPubMedGoogle Scholar
  78. Jipa IM, Stoicaguzun A, Stroescu M (2012) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT-Food Sci Technol 47(2):400–406.  https://doi.org/10.1016/j.lwt.2012.01.039 CrossRefGoogle Scholar
  79. Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22(2):935–969.  https://doi.org/10.1007/s10570-015-0551-0 CrossRefGoogle Scholar
  80. Kasaai MR (2008) A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydr Polym 71(4):497–508.  https://doi.org/10.1016/j.carbpol.2007.07.009 CrossRefGoogle Scholar
  81. Katepetch C, Rujiravanit R (2013) Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose 20(3):1275–1292.  https://doi.org/10.1007/s10570-013-9892-8 CrossRefGoogle Scholar
  82. Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18(3):622–637.  https://doi.org/10.1039/C5GC02500A CrossRefGoogle Scholar
  83. Kaya M, Baran T (2015) Description of a new surface morphology for chitin extracted from wings of cockroach (Periplaneta americana). Int J Biol Macromol 75:7–12.  https://doi.org/10.1016/j.ijbiomac.2015.01.015 CrossRefPubMedGoogle Scholar
  84. Kaya M, Baran T, Mentes A, Asaroglu M, Sezen G, Tozak KO (2014a) Extraction and characterization of α-chitin and chitosan from six different aquatic invertebrates. Food Biophys 9(2):145–157.  https://doi.org/10.1007/s11483-013-9327-y CrossRefGoogle Scholar
  85. Kaya M, Baublys V, Can E, Šatkauskienė I, Bitim B, Tubelytė V, Baran T (2014b) Comparison of physicochemical properties of chitins isolated from an insect (Melolontha melolontha) and a crustacean species (Oniscus asellus). Zoomorphology 133(3):285–293.  https://doi.org/10.1007/s00435-014-0227-6 CrossRefGoogle Scholar
  86. Kaya M, Lelešius E, Nagrockaitė R, Sargin I, Arslan G, Mol A, Baran T, Can E, Bitim B (2015) Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species. PLoS One 10(1):e0115531.  https://doi.org/10.1371/journal.pone.0115531 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62(1):3–11.  https://doi.org/10.1016/j.addr.2009.09.004 CrossRefPubMedGoogle Scholar
  88. Keun PB, Moon-Moo K (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 11(12):5152–5164.  https://doi.org/10.3390/ijms11125152 CrossRefGoogle Scholar
  89. Khalid A, Khan R, Ul-Islam M, Khan T, Wahid F (2017) Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr Polym 164:214–221.  https://doi.org/10.1016/j.carbpol.2017.01.061 CrossRefPubMedGoogle Scholar
  90. Khan FI, Rahman S, Queen A, Ahamad S, Ali S, Kim J, Hassan MI (2017) Implications of molecular diversity of chitin and its derivatives. Appl Microbiol Biotechnol 101(9):3513–3536.  https://doi.org/10.1007/s00253-017-8229-1 CrossRefPubMedGoogle Scholar
  91. Khatri V, Halász K, Trandafilović LV, Dimitrijević-Branković S, Mohanty P, Djoković V, Csóka L (2014) ZnO-modified cellulose fiber sheets for antibody immobilization. Carbohydr Polym 109(6):139–147.  https://doi.org/10.1016/j.carbpol.2014.03.061 CrossRefPubMedGoogle Scholar
  92. Klaykruayat B, Siralertmukul K, Srikulkit K (2010) Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric. Carbohydr Polym 80(1):197–207.  https://doi.org/10.1016/j.carbpol.2009.11.013 CrossRefGoogle Scholar
  93. Kokkarachedu V, Gownolla Malegowd R, Tippabattini J, Jongchul S (2016) Nano zinc oxide-sodium alginate antibacterial cellulose fibres. Carbohydr Polym 135:349–355.  https://doi.org/10.1016/j.carbpol.2015.08.078 CrossRefGoogle Scholar
  94. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63.  https://doi.org/10.1016/j.ijfoodmicro.2010.09.012 CrossRefPubMedGoogle Scholar
  95. Kong CS, Kim JA, Bak SS, Byun HG, Kim SK (2011) Anti-obesity effect of carboxymethyl chitin by AMPK and aquaporin-7 pathways in 3T3-L1 adipocytes. J Nutr Biochem 22(3):276–281.  https://doi.org/10.1016/j.jnutbio.2010.02.005 CrossRefPubMedGoogle Scholar
  96. Krumm C, Pfaendtner J, Dauenhauer PJ (2016) Millisecond pulsed films unify the mechanisms of cellulose fragmentation. Chem Mater 28(9):3108–3114.  https://doi.org/10.1021/acs.chemmater.6b00580 CrossRefGoogle Scholar
  97. Kumar NA, Rejinold NS, Anjali P, Balakrishnan A, Biswas R, Jayakumar R (2013) Preparation of chitin nanogels containing nickel nanoparticles. Carbohydr Polym 97(2):469–474.  https://doi.org/10.1016/j.carbpol.2013.05.009 CrossRefPubMedGoogle Scholar
  98. Lefatshe K, Muiva CM, Kebaabetswe LP (2017) Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohydr Polym 164:301–308CrossRefPubMedGoogle Scholar
  99. Li F, Biagioni P, Finazzi M, Tavazzi S, Piergiovanni L (2013) Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydr Polym 92(2):2128–2134.  https://doi.org/10.1016/j.carbpol.2012.11.091 CrossRefPubMedGoogle Scholar
  100. Li YY, Zhu HL, Xu M, Zhuang ZL, Xu MD, Dai HQ (2014) High yield preparation method of thermally stable cellulose nanofibers. BioRes 9(2):1986–1997.  https://doi.org/10.15376/biores.9.2.1986-1997 CrossRefGoogle Scholar
  101. Li R, He M, Li T, Zhang L (2015) Preparation and properties of cellulose/silver nanocomposite fibers. Carbohydr Polym 115(115):269–275.  https://doi.org/10.1016/j.carbpol.2014.08.046 CrossRefPubMedGoogle Scholar
  102. Li B, Zhang Y, Yang Y, Qiu W, Wang X, Liu B, Wang Y, Sun G (2016) Synthesis, characterization, and antibacterial activity of chitosan/TiO2 nanocomposite against Xanthomonas oryzae pv. oryzae. Carbohydr Polym 152:825–831.  https://doi.org/10.1016/j.carbpol.2016.07.070 CrossRefPubMedGoogle Scholar
  103. Liang S, Dang Q, Liu C, Zhang Y, Wang Y, Zhu W, Chang G, Sun H, Cha D, Fan B (2018) Characterization and antibacterial mechanism of poly(aminoethyl) modified chitin synthesized via a facile one-step pathway. Carbohydr Polym 195:275.  https://doi.org/10.1016/j.carbpol.2018.04.109 CrossRefPubMedGoogle Scholar
  104. Lim SH, Hudson SM (2004) Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res 339(2):313–319.  https://doi.org/10.1016/j.carres.2003.10.024 CrossRefPubMedGoogle Scholar
  105. Lima PH, Pereira SV, Rabello RB, Rodriguezcastellón E, Beppu MM, Chevallier P, Mantovani D, Vieira RS (2013) Blood protein adsorption on sulfonated chitosan and κ-carrageenan films. Colloids Surf B Biointerfaces 111(2):719–725.  https://doi.org/10.1016/j.colsurfb.2013.06.002 CrossRefPubMedGoogle Scholar
  106. Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-h (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611.  https://doi.org/10.1016/j.carbpol.2013.01.076 CrossRefPubMedGoogle Scholar
  107. Littunen K, Castro JSD, Samoylenko A, Xu Q, Quaggin S, Vainio S, Seppälä J (2016) Synthesis of cationized nanofibrillated cellulose and its antimicrobial properties. Eur Polym J 75:116–124.  https://doi.org/10.1016/j.eurpolymj.2015.12.008 CrossRefGoogle Scholar
  108. Liu M, Zheng H, Chen J, Li S, Huang J, Zhou C (2016a) Chitosan-chitin nanocrystal composite scaffolds for tissue engineering. Carbohydr Polym 152:832–840.  https://doi.org/10.1016/j.carbpol.2016.07.042 CrossRefPubMedGoogle Scholar
  109. Liu Z, Lv M, Li F, Zeng M (2016b) Development, characterization, and antimicrobial activity of gelatin/chitosan/ZnO nanoparticle composite films. J Aquat Food Prod T 25(7):1056–1063.  https://doi.org/10.1080/10498850.2014.923081 CrossRefGoogle Scholar
  110. Liu LP, Yang XN, Ye L, Xue DD, Liu M, Jia SR, Hou Y, Chu LQ, Zhong C (2017) Preparation and characterization of a photocatalytic antibacterial material: graphene oxide/TiO2/bacterial cellulose nanocomposite. Carbohydr Polym 174:1078–1086.  https://doi.org/10.1016/j.carbpol.2017.07.042 CrossRefPubMedGoogle Scholar
  111. Lizundia E, Urruchi A, Vilas JL, León LM (2016) Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films. Carbohydr Polym 136:250–258.  https://doi.org/10.1016/j.carbpol.2015.09.041 CrossRefPubMedGoogle Scholar
  112. Lokanathan AR, Uddin KMA, Rojas OJ, Laine J (2014) Cellulose nanocrystal-mediated synthesis of silver nanoparticles: role of sulfate groups in nucleation phenomena. Biomacromolecules 15(1):373.  https://doi.org/10.1021/bm401613h CrossRefPubMedGoogle Scholar
  113. Lu Z, Gao J, He Q, Wu J, Liang D, Yang H, Chen R (2017) Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr Polym 156:460–469.  https://doi.org/10.1016/j.carbpol.2016.09.051 CrossRefPubMedGoogle Scholar
  114. Ma B, Zhang M, He C, Sun J (2012) New binary ionic liquid system for the preparation of chitosan/cellulose composite fibers. Carbohydr Polym 88(1):347–351.  https://doi.org/10.1016/j.carbpol.2011.12.020 CrossRefGoogle Scholar
  115. Ma B, Huang Y, Zhu C, Chen C, Chen X, Fan M, Sun D (2016) Novel Cu@SiO2/bacterial cellulose nanofibers: preparation and excellent performance in antibacterial activity. Mat Sci Eng C Mater 62:656–661.  https://doi.org/10.1016/j.msec.2016.02.011 CrossRefGoogle Scholar
  116. Malinak D, Dolezal R, Marek J, Salajkova S, Soukup O, Vejsova M, Korabecny J, Honegr J, Penhaker M, Musilek K (2014) 6-Hydroxyquinolinium salts differing in the length of alkyl side-chain: synthesis and antimicrobial activity. Bioorg Med Chem Lett 24(22):5238–5241.  https://doi.org/10.1016/j.bmcl.2014.09.060 CrossRefPubMedGoogle Scholar
  117. Martins AF, Facchi SP, Follmann HDM, Pereira AGB, Rubira AF, Muniz EC (2014) Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review. Int J Mol Sci 15(11):20800–20832.  https://doi.org/10.3390/ijms151120800 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Mary G, Bajpai SK, Chand N (2010) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym Sci 113(2):757–766.  https://doi.org/10.1002/app.29890 CrossRefGoogle Scholar
  119. Matsuyama K, Morotomi K, Inoue S, Nakashima M, Nakashima H, Okuyama T, Kato T, Muto H, Sugiyama H (2019) Antibacterial and antifungal properties of Ag nanoparticle-loaded cellulose nanofiber aerogels prepared by supercritical CO2 drying. J Supercrit. Fluids 143:1–7.  https://doi.org/10.1016/j.supflu.2018.08.008 CrossRefGoogle Scholar
  120. Mehrabani MG, Karimian R, Rakhshaei R, Pakdel F, Eslami H, Fakhrzadeh V, Rahimi M, Salehi R, Kafil HS (2018) Chitin/silk fibroin/TiO2 bio-nanocomposite as a biocompatible wound dressing bandage with strong antimicrobial activity. Int J Biol Macromol 116:966–976.  https://doi.org/10.1016/j.ijbiomac.2018.05.102 CrossRefPubMedGoogle Scholar
  121. Moniri MB, Moghaddam A, Azizi S, Abdul RR, Bin AA, Zuhainis SW, Navaderi M, Mohamad R (2017) Production and status of bacterial cellulose in biomedical engineering. Nanomaterials 7:257.  https://doi.org/10.3390/nano7090257 CrossRefPubMedCentralGoogle Scholar
  122. Moriana R, Vilaplana F, Ek M (2016) Cellulose nanocrystals from forest residues as reinforcing agents for composites: a study from macro- to nano-dimensions. Carbohydr Polym 139:139–149.  https://doi.org/10.1016/j.carbpol.2015.12.020 CrossRefPubMedGoogle Scholar
  123. Morkaew T, Pinyakong O, Tachaboonyakiat W (2017) Structural effect of quaternary ammonium chitin derivatives on their bactericidal activity and specificity. Int J Biol Macromol 101:719–728.  https://doi.org/10.1016/j.ijbiomac.2017.03.159 CrossRefPubMedGoogle Scholar
  124. Mujeeb RP, Muraleedaran K, Mujeeb VMA (2015) Applications of chitosan powder with in situ synthesized nano ZnO particles as an antimicrobial agent. Int J Biol Macromol 77:266–272.  https://doi.org/10.1016/j.ijbiomac.2015.03.058 CrossRefPubMedGoogle Scholar
  125. Muzzarelli RAA, Tanfani F (1985) The N -permethylation of chitosan and the preparation of N-trimethyl chitosan iodide. Carbohydr Polym 5(4):297–307.  https://doi.org/10.1016/0144-8617(85)90037-2 CrossRefGoogle Scholar
  126. Ng VW, Chan JM, Sardon H, Ono RJ, García JM, Yang YY, Hedrick JL (2014) Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv Drug Deliv Rev 78:46–62.  https://doi.org/10.1016/j.addr.2014.10.028 CrossRefPubMedGoogle Scholar
  127. Nishimura S, Shinada KYT, Tokura S, Kurita KNH, Yamamoto N, Uryu T, Kai H (1998) Regioselective syntheses of sulfated polysaccharides: specific anti-HIV-1 activity of novel chitin sulfates. Carbohydr Res 306(3):427–433.  https://doi.org/10.1016/S0008-6215(97)10081-7 CrossRefPubMedGoogle Scholar
  128. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2002) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(47):9074–9082.  https://doi.org/10.1021/ja0257319 CrossRefPubMedGoogle Scholar
  129. Nithya A, Jothivenkatachalam K (2015) Chitosan assisted synthesis of ZnO nanoparticles: an efficient solar light driven photocatalyst and evaluation of antibacterial activity. J Mater Sci Mater Electron 26(12):10207–10216.  https://doi.org/10.1007/s10854-015-3710-z CrossRefGoogle Scholar
  130. Nouri A, Yaraki MT, Ghorbanpour M, Agarwal S, Gupta VK (2017) Enhanced antibacterial effect of chitosan film using montmorillonite/CuO nanocomposite. Int J Biol Macromol 109:1219–1231.  https://doi.org/10.1016/j.ijbiomac.2017.11.119 CrossRefPubMedGoogle Scholar
  131. Olaru N, Calin G, Olaru L (2014) Zinc oxide nanocrystals grown on cellulose acetate butyrate nanofiber mats and their potential photocatalytic activity for dye degradation. Ind Eng Chem Res 53(46):17968–17975.  https://doi.org/10.1021/ie503139a CrossRefGoogle Scholar
  132. Ouerghemmi S, Dimassi S, Tabary N, Leclercq L, Degoutin S, Chai F, Pierlot C, Cazaux F, Ung A, Staelens JN (2018) Synthesis and characterization of polyampholytic aryl-sulfonated chitosans and their in vitro anticoagulant activity. Carbohydr Polym 196:8–17.  https://doi.org/10.1016/j.carbpol.2018.05.025 CrossRefPubMedGoogle Scholar
  133. Oun AA, Rhim J-W (2017) Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohydr Polym 169:467–479.  https://doi.org/10.1016/j.carbpol.2017.04.042 CrossRefPubMedGoogle Scholar
  134. Oun AA, Rhim J-W (2018) Effect of isolation methods of chitin nanocrystals on the properties of chitin-silver hybrid nanoparticles. Carbohydr Polym 197:349–358.  https://doi.org/10.1016/j.carbpol.2018.06.033 CrossRefPubMedGoogle Scholar
  135. Oyervides-Muñoz E, Pollet E, Ulrich G, De JS-SG, Avérous L (2017) Original method for synthesis of chitosan-based antimicrobial agent by quaternary ammonium grafting. Carbohydr Polym 157:1922.  https://doi.org/10.1016/j.carbpol.2016.11.081 CrossRefPubMedGoogle Scholar
  136. Pal S, Nisi R, Stoppa M, Licciulli A (2017) Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega 2:3632–3639.  https://doi.org/10.1021/acsomega.7b00442 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, Martin AA, Da SR, de Freitas RA (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104(Pt A):97–106.  https://doi.org/10.1016/j.ijbiomac.2017.05.171 CrossRefPubMedGoogle Scholar
  138. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678.  https://doi.org/10.1016/j.progpolymsci.2009.04.001 CrossRefGoogle Scholar
  139. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109(12):6712–6728.  https://doi.org/10.1021/cr9001947 CrossRefPubMedGoogle Scholar
  140. Prabhu S (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32.  https://doi.org/10.1186/2228-5326-2-32 CrossRefGoogle Scholar
  141. Qi H, Liu J, Gao S, Mäder E (2013) Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline–urea solution. J Mater Chem A 1(6):2161–2168.  https://doi.org/10.1039/C2TA00882C CrossRefGoogle Scholar
  142. Qu G, Wu X, Yin L, Zhang C (2012) N-octyl-O-sulfate chitosan-modified liposomes for delivery of docetaxel: preparation, characterization, and pharmacokinetics. Biomed Pharmacother 66(1):46–51.  https://doi.org/10.1016/j.biopha.2011.09.010 CrossRefPubMedGoogle Scholar
  143. Rahman PM, Mujeeb VMA, Muraleedharan K (2017) Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat. Int J Biol Macromol 97:382–391.  https://doi.org/10.1016/j.ijbiomac.2017.01.052 CrossRefPubMedGoogle Scholar
  144. Rahman I, Attan N, Mahat NA, Jamalis J, Abdul AK, Kurniawan C, Wahab RA (2018) Statistical optimization and operational stability of Rhizomucor miehei lipase supported on magnetic chitosan/chitin nanoparticles for synthesis of pentyl valerate. Int J Biol Macromol 115:680–695.  https://doi.org/10.1016/j.ijbiomac.2018.04.111 CrossRefPubMedGoogle Scholar
  145. Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99(6):2491–2511.  https://doi.org/10.1007/s00253-015-6426-3 CrossRefPubMedGoogle Scholar
  146. Rakhshaei R, Namazi H (2017) A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mat Sci Eng C Mater 73:456–464.  https://doi.org/10.1016/j.msec.2016.12.097 CrossRefGoogle Scholar
  147. Revathi T, Thambidurai S (2018) Immobilization of ZnO on Chitosan-Neem seed composite for enhanced thermal and antibacterial activity. Adv Powder Technol 29(6):1445–1454.  https://doi.org/10.1016/j.apt.2018.03.007 CrossRefGoogle Scholar
  148. Roy D, Knapp JS, Guthrie JT, Perrier S (2008) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9(1):91–99.  https://doi.org/10.1021/bm700849j CrossRefPubMedGoogle Scholar
  149. Rúnarsson ÖV, Holappa J, Malainer C, Steinsson H, Hjálmarsdóttir M, Nevalainen T, Másson M (2010) Antibacterial activity of N-quaternary chitosan derivatives: synthesis, characterization and structure activity relationship (SAR) investigations. Eur Polym J 46(6):1251–1267.  https://doi.org/10.1016/j.eurpolymj.2010.03.001 CrossRefGoogle Scholar
  150. Saini S, Belgacem MN, Salon MCB, Bras J (2016) Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane. Cellulose 23(1):795–810.  https://doi.org/10.1007/s10570-015-0854-1 CrossRefGoogle Scholar
  151. Sajomsang W, Ruktanonchai UR, Gonil P, Warin C (2010) Quaternization of N-(3-pyridylmethyl) chitosan derivatives: effects of the degree of quaternization, molecular weight and ratio of N-methylpyridinium and N, N, N-trimethyl ammonium moieties on bactericidal activity. Carbohydr Polym 82(4):1143–1152.  https://doi.org/10.1016/j.carbpol.2010.06.047 CrossRefGoogle Scholar
  152. Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626.  https://doi.org/10.1021/bm0493685 CrossRefGoogle Scholar
  153. Sanmugam A, Vikraman D, Park HJ, Kim HS (2017) One-pot facile methodology to synthesize chitosan-ZnO-graphene oxide hybrid composites for better dye adsorption and antibacterial activity. Nanomaterials 7(11):363.  https://doi.org/10.3390/nano7110363 CrossRefPubMedCentralGoogle Scholar
  154. Seedevi P, Moovendhan M, Vairamani S, Shanmugam A (2017) Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadi. Int J Biol Macromol 99:519–529.  https://doi.org/10.1016/j.ijbiomac.2017.03.012 CrossRefPubMedGoogle Scholar
  155. Shahmohammadi JF, Almasi H (2016) Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr Polym 149:8–19.  https://doi.org/10.1016/j.carbpol.2016.04.089 CrossRefGoogle Scholar
  156. Shankar S, Rhim JW (2017) Facile approach for large-scale production of metal and metal oxide nanoparticles and preparation of antibacterial cotton pads. Carbohydr Polym 163:137–145.  https://doi.org/10.1016/j.carbpol.2017.01.059 CrossRefPubMedGoogle Scholar
  157. Shankar S, Rhim J-W (2018) Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll 82:116–123.  https://doi.org/10.1016/j.foodhyd.2018.03.054 CrossRefGoogle Scholar
  158. Shankar S, Oun AA, Rhim J-W (2018) Preparation of antimicrobial hybrid nano-materials using regenerated cellulose and metallic nanoparticles. Int J Biol Macromol 107:17–27.  https://doi.org/10.1016/j.ijbiomac.2017.08.129 CrossRefPubMedGoogle Scholar
  159. Shanmugam A, Kathiresan K, Nayak L (2016) Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885). Biotechnol Rep 9:25–30.  https://doi.org/10.1016/j.btre.2015.10.007 CrossRefGoogle Scholar
  160. Shao W, Wang S, Wu J, Huang M, Liu H, Min H (2016) Synthesis and antimicrobial activity of copper nanoparticle loaded regenerated bacterial cellulose membranes. RSC Adv 6(70):65879–65884.  https://doi.org/10.1039/c6ra07984a CrossRefGoogle Scholar
  161. Solairaj D, Rameshthangam P, Muthukumaran P, Wilson J (2017) Studies on electrochemical glucose sensing, antimicrobial activity and cytotoxicity of fabricated copper nanoparticle immobilized chitin nanostructure. Int J Biol Macromol 101:668–679.  https://doi.org/10.1016/j.ijbiomac.2017.03.147 CrossRefPubMedGoogle Scholar
  162. Stefanescu C, Daly WH, Negulescu II (2012) Biocomposite films prepared from ionic liquid solutions of chitosan and cellulose. Carbohydr Polym 87(1):435–443.  https://doi.org/10.1016/j.carbpol.2011.08.003 CrossRefGoogle Scholar
  163. Subhapradha N, Ramasamy P, Sudharsan S, Seedevi P, Moovendhan M, Srinivasan A, Shanmugam V, Shanmugam A (2013) Preparation of phosphorylated chitosan from gladius of the squid Sepioteuthis lessoniana (Lesson, 1830) and its in vitro antioxidant activity. Bioact Carbohydr Dietary Fibre 1(2):148–155.  https://doi.org/10.1016/j.bcdf.2013.03.001 CrossRefGoogle Scholar
  164. Sun Z, Shi C, Wang X, Fang Q, Huang J (2017) Synthesis, characterization, and antimicrobial activities of sulfonated chitosan. Carbohydr Polym 155:321–328.  https://doi.org/10.1016/j.carbpol.2016.08.069 CrossRefPubMedGoogle Scholar
  165. Sun G, Zhang X, Bao Z, Lang X, Zhou Z, Li Y, Feng C, Chen X (2018) Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology. Carbohydr Polym 189:280–288.  https://doi.org/10.1016/j.carbpol.2018.01.083 CrossRefPubMedGoogle Scholar
  166. Tang T, Zhang G, Lau CP, Zheng LZ, Xie XH, Wang XL, Wang XH, He K, Patrick Y, Qin L (2011) Effect of water-soluble P-chitosan and S-chitosan on human primary osteoblasts and giant cell tumor of bone stromal cells. Biomed Mater 6(1):015004.  https://doi.org/10.1088/1748-6041/6/1/015004 CrossRefPubMedGoogle Scholar
  167. Tang H, Lu A, Li L, Zhou W, Xie Z, Zhang L (2013) Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix. Chem Eng J 234:124–131.  https://doi.org/10.1016/j.cej.2013.08.096 CrossRefGoogle Scholar
  168. Thaya R, Malaikozhundan B, Vijayakumar S, Sivakamavalli J, Jeyasekar R, Shanthi S, Vaseeharan B, Ramasamy P, Sonawane A (2016) Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages. Microb Pathog 100:124–132.  https://doi.org/10.1016/j.micpath.2016.09.010 CrossRefPubMedGoogle Scholar
  169. Tran CD, Duri S, Delneri A, Franko M (2013) Chitosan-cellulose composite materials: preparation, characterization and application for removal of microcystin. J Hazard Mater 252-253(5):355–366.  https://doi.org/10.1016/j.jhazmat.2013.02.046 CrossRefPubMedGoogle Scholar
  170. Uddin KMA, Lokanathan AR, Liljestrom A, Chen X, Rojas OJ, Laine J (2014) Silver nanoparticle synthesis mediated by carboxylated cellulose nanocrystals. Green Mater 2(4):183–192.  https://doi.org/10.1680/gmat.14.00010 CrossRefGoogle Scholar
  171. Ul-Islam M, Khattak WA, Ullah MW, Khan S, Park JK (2014) Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 21(1):433–447.  https://doi.org/10.1007/s10570-013-0109-y CrossRefGoogle Scholar
  172. Ullah H, Wahid F, Santos HA, Khan T (2016) Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150:330–352.  https://doi.org/10.1016/j.carbpol.2016.05.029 CrossRefPubMedGoogle Scholar
  173. Upadhyaya L, Singh J, Agarwal V, Tewari RP (2013) Biomedical applications of carboxymethyl chitosans. Carbohydr Polym 91(1):452–466.  https://doi.org/10.1016/j.carbpol.2012.07.076 CrossRefPubMedGoogle Scholar
  174. Upadhyaya L, Singh J, Agarwal V, Tewari RP (2014) The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. J Control Release 186(186):54–87.  https://doi.org/10.1016/j.jconrel.2014.04.043 CrossRefPubMedGoogle Scholar
  175. Usman A, Zia KM, Zuber M, Tabasum S, Rehman S, Zia F (2016) Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. Int J Biol Macromol 86:630–645.  https://doi.org/10.1016/j.ijbiomac.2016.02.004 CrossRefPubMedGoogle Scholar
  176. Verlee A, Mincke S, Stevens CV (2017) Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym 164:268–283.  https://doi.org/10.1016/j.carbpol.2017.02.001 CrossRefPubMedGoogle Scholar
  177. Volova TG, Shumilova AA, Shidlovskiy IP, Nikolaeva ED, Sukovatiy AG, Vasiliev AD, Shishatskaya EI (2018) Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics. Polym Test 65:54–68.  https://doi.org/10.1016/j.polymertesting.2017.10.023 CrossRefGoogle Scholar
  178. Vongchan P, Sajomsang W, Subyen D, Kongtawelert P (2002) Anticoagulant activity of a sulfated chitosan. Carbohydr Res 337(13):1239–1242.  https://doi.org/10.1016/S0008-6215(02)00098-8 CrossRefPubMedGoogle Scholar
  179. Wahid F, Yin JJ, Xue DD, Xue H, Lu YS, Zhong C, Chu LQ (2016) Synthesis and characterization of antibacterial carboxymethyl chitosan/ZnO nanocomposite hydrogels. Int J Biol Macromol 88:273–279.  https://doi.org/10.1016/j.ijbiomac.2016.03.044 CrossRefPubMedGoogle Scholar
  180. Wahid F, Wang HS, Lu YS, Zhong C, Chu LQ (2017a) Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int J Biol Macromol 101:690–695.  https://doi.org/10.1016/j.ijbiomac.2017.03.132 CrossRefPubMedGoogle Scholar
  181. Wahid F, Wang HS, Zhong C, Chu LQ (2017b) Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. Carbohydr Polym 165:455–461.  https://doi.org/10.1016/j.carbpol.2017.02.085 CrossRefPubMedGoogle Scholar
  182. Wahid F, Zhong C, Wang HS, Hu XH, Chu LQ (2017c) Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers 9(12):636.  https://doi.org/10.3390/polym9120636 CrossRefGoogle Scholar
  183. Wahid F, Zhou Y-N, Wang H-S, Wan T, Zhong C, Chu L-Q (2018) Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity. Int J Biol Macromol 114:1233–1239.  https://doi.org/10.1016/j.ijbiomac.2018.04.025 CrossRefPubMedGoogle Scholar
  184. Wahid F, Hu X-H, Chu L-Q, Jia S-R, Xie Y-Y, Zhong C (2019) Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. Int J Biol Macromol 122:380–387.  https://doi.org/10.1016/j.ijbiomac.2018.10.105 CrossRefPubMedGoogle Scholar
  185. Wan A, Xu Q, Sun Y, Li H (2013) Antioxidant activity of high molecular weight chitosan and N,O-quaternized chitosans. J Agric Food Chem 61(28):6921–6928.  https://doi.org/10.1021/jf402242e CrossRefPubMedGoogle Scholar
  186. Wang MS, Jiang F, Hsieh Y-L, Nitin N (2014a) Cellulose nanofibrils improve dispersibility and stability of silver nanoparticles and induce production of bacterial extracellular polysaccharides. J Mater Chem B 2(37):6226–6235.  https://doi.org/10.1039/c4tb00630e CrossRefGoogle Scholar
  187. Wang Y, Wang E, Wu Z, Li H, Zhu Z, Zhu X, Dong Y (2014b) Synthesis of chitosan molecularly imprinted polymers for solid-phase extraction of methandrostenolone. Carbohydr Polym 101(1):517–523.  https://doi.org/10.1016/j.carbpol.2013.09.078 CrossRefPubMedGoogle Scholar
  188. Wang C-H, Liu W-S, Sun J-F, Hou G-G, Chen Q, Cong W, Zhao F (2016a) Non-toxic O-quaternized chitosan materials with better water solubility and antimicrobial function. Int J Biol Macromol 84:418–427.  https://doi.org/10.1016/j.ijbiomac.2015.12.047 CrossRefPubMedGoogle Scholar
  189. Wang J, Wang L, Yu H, Zain-Ul-Abdin CY, Chen Q, Zhou W, Zhang H, Chen X (2016b) Recent progress on synthesis, property and application of modified chitosan: an overview. Int J Biol Macromol 88:333–344.  https://doi.org/10.1016/j.ijbiomac.2016.04.002 CrossRefPubMedGoogle Scholar
  190. Wang S, Lu A, Zhang L (2016c) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206.  https://doi.org/10.1016/j.progpolymsci.2015.07.003 CrossRefGoogle Scholar
  191. Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84(1):533–538.  https://doi.org/10.1016/j.carbpol.2010.12.017 CrossRefGoogle Scholar
  192. Wu M, Long Z, Xiao H, Dong C (2016) Recent research progress on preparation and application of N, N, N-trimethyl chitosan. Carbohydr Res 434:27–32.  https://doi.org/10.1016/j.carres.2016.08.002 CrossRefPubMedGoogle Scholar
  193. Wu Z, Deng W, Luo J, Deng D (2019) Multifunctional nano-cellulose composite films with grape seed extracts and immobilized silver nanoparticles. Carbohydr Polym 205:447–455.  https://doi.org/10.1016/j.carbpol.2018.10.060 CrossRefPubMedGoogle Scholar
  194. Xiao W, Wu T, Peng J, Bai Y, Li J, Lai G, Wu Y, Dai L (2013) Preparation, structure, and properties of chitosan/cellulose/multiwalled carbon nanotube composite membranes and fibers. J Appl Polym Sci 128(2):1193–1199.  https://doi.org/10.1002/app.38329 CrossRefGoogle Scholar
  195. Xing J, Wang X, Xun J, Peng J, Xu Q, Zhang W, Lou T (2018) Preparation of micro-nanofibrous chitosan sponges with ternary solvents for dye adsorption. Carbohydr Polym 198:69–75.  https://doi.org/10.1016/j.carbpol.2018.06.064 CrossRefPubMedGoogle Scholar
  196. Xiong R, Lu C, Zhang W, Zhou Z, Zhang X (2013) Facile synthesis of tunable silver nanostructures for antibacterial application using cellulose nanocrystals. Carbohydr Polym 95(1):214–219.  https://doi.org/10.1016/j.carbpol.2013.02.077 CrossRefPubMedGoogle Scholar
  197. Xu T, Xin M, Li M, Huang H, Zhou S (2010) Synthesis, characteristic and antibacterial activity of N,N,N-trimethyl chitosan and its carboxymethyl derivatives. Carbohydr Polym 81(4):931–936.  https://doi.org/10.1016/j.carbpol.2010.04.008 CrossRefGoogle Scholar
  198. Xu T, Xin M, Li M, Huang H, Zhou S, Liu J (2011) Synthesis, characterization, and antibacterial activity of N,O-quaternary ammonium chitosan. Carbohydr Res 346(15):2445–2450.  https://doi.org/10.1016/j.carres.2011.08.002 CrossRefPubMedGoogle Scholar
  199. Xu H, Fang Z, Tian W, Wang Y, Ye Q, Zhang L, Cai J (2018) Green fabrication of amphiphilic auaternized β-chitin derivatives with excellent biocompatibility and antibacterial activities for wound healing. Adv Mater:e1801100 doi:  https://doi.org/10.1002/adma.201801100
  200. Yan J, Abdelgawad AM, El-Naggar ME, Rojas OJ (2016) Antibacterial activity of silver nanoparticles synthesized in-situ by solution spraying onto cellulose. Carbohydr Polym 147:500–508.  https://doi.org/10.1016/j.carbpol.2016.03.029 CrossRefPubMedGoogle Scholar
  201. Yang J, Xie Q, Zhu J, Zou C, Chen L, Du Y, Li D (2015) Preparation and in vitro antioxidant activities of 6-amino-6-deoxychitosan and its sulfonated derivatives. Biopolymers 103(10):539–549.  https://doi.org/10.1002/bip.22656 CrossRefPubMedGoogle Scholar
  202. Yang XN, Xue DD, Li JY, Liu M, Jia SR, Chu LQ, Wahid F, Zhang YM, Zhong C (2016) Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. Carbohydr Polym 136:1152–1160.  https://doi.org/10.1016/j.carbpol.2015.10.020 CrossRefPubMedGoogle Scholar
  203. Younesa I, Nasri R, Chaabouni M, Rinaudo M, Nasri M (2012) Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochem 47(12):2032–2039.  https://doi.org/10.1016/j.procbio.2012.07.017 CrossRefGoogle Scholar
  204. Youssef AM, Abdel-Aziz MS, El-Sayed SM (2014) Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials. Int J Biol Macromol 69(8):185–191.  https://doi.org/10.1016/j.ijbiomac.2014.05.047 CrossRefPubMedGoogle Scholar
  205. Youssef AM, Abou-Yousef H, El-Sayed SM, Kamel S (2015) Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. Int J Biol Macromol 76:25–32.  https://doi.org/10.1016/j.ijbiomac.2015.02.016 CrossRefPubMedGoogle Scholar
  206. Yu HY, Chen GY, Wang YB, Yao JM (2015) A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose 22(1):261–273.  https://doi.org/10.1007/s10570-014-0491-0 CrossRefGoogle Scholar
  207. Yu N, Cai T, Sun Y, Jiang C, Xiong H, Li Y, Peng H (2018) A novel antibacterial agent based on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like activity for synergistic antibacterial activity and wound-healing. Int J Pharm 552(1):277–287.  https://doi.org/10.1016/j.ijpharm.2018.10.002 CrossRefPubMedGoogle Scholar
  208. Yue X, Zhang T, Yang D, Qiu F, Li Z, Wei G, Qiao Y (2019) Ag nanoparticles coated cellulose membrane with high infrared reflection, breathability and antibacterial property for human thermal insulation. J Colloid Interface Sci 535:363–370.  https://doi.org/10.1016/j.jcis.2018.10.009 CrossRefPubMedGoogle Scholar
  209. Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2(3):204–226.  https://doi.org/10.1002/cben.201400025 CrossRefGoogle Scholar
  210. Zhai M, Xu Y, Zhou B, Jing W (2018) Keratin-chitosan/n-ZnO nanocomposite hydrogel for antimicrobial treatment of burn wound healing: characterization and biomedical application. J Photochem Photobiol B Biol 180:253–258.  https://doi.org/10.1016/j.jphotobiol.2018.02.018 CrossRefGoogle Scholar
  211. Zhang X, Xiao G, Wang Y, Zhao Y, Su H, Tan T (2017) Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr Polym 169:101–107.  https://doi.org/10.1016/j.carbpol.2017.03.073 CrossRefPubMedGoogle Scholar
  212. Zhao L, Wu Y, Chen S, Xing T (2015) Preparation and characterization of cross-linked carboxymethyl chitin porous membrane scaffold for biomedical applications. Carbohydr Polym 126(3):150–155.  https://doi.org/10.1016/j.carbpol.2015.02.050 CrossRefPubMedGoogle Scholar
  213. Zhou Z, Lu C, Wu X, Zhang X (2013) Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: facile synthesis and their application to 4-nitrophenol reduction. RSC Adv 3(48):26066–26073.  https://doi.org/10.1039/C3RA43006E CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shahia Khattak
    • 1
    • 2
  • Fazli Wahid
    • 1
    • 2
  • Ling-Pu Liu
    • 1
    • 2
  • Shi-Ru Jia
    • 1
    • 2
  • Li-Qiang Chu
    • 3
  • Yan-Yan Xie
    • 1
    • 2
  • Zi-Xuan Li
    • 4
  • Cheng Zhong
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Industrial Fermentation Microbiology, Ministry of EducationTianjin University of Science and TechnologyTianjinPeople’s Republic of China
  2. 2.State Key Laboratory of Food Nutrition and SafetyTianjin University of Science and TechnologyTianjinPeople’s Republic of China
  3. 3.College of Chemical Engineering and Materials ScienceTianjin University of Science and TechnologyTianjinPeople’s Republic of China
  4. 4.School of MedicineTibet UniversityLhasaPeople’s Republic of China

Personalised recommendations