Advertisement

Characterization of a thermostable flavin-containing monooxygenase from Nitrincola lacisaponensis (NiFMO)

  • Nikola Lončar
  • Filippo Fiorentini
  • Gautier Bailleul
  • Simone Savino
  • Elvira Romero
  • Andrea Mattevi
  • Marco W. Fraaije
Biotechnologically relevant enzymes and proteins
  • 86 Downloads

Abstract

The flavin-containing monooxygenases (FMOs) play an important role in drug metabolism but they also have a high potential in industrial biotransformations. Among the hitherto characterized FMOs, there was no thermostable representative, while such biocatalyst would be valuable for FMO-based applications. Through a targeted genome mining approach, we have identified a gene encoding for a putative FMO from Nitrincola lacisaponensis, an alkaliphilic extremophile bacterium. Herein, we report the biochemical and structural characterization of this newly discovered bacterial FMO (NiFMO). NiFMO can be expressed as active and soluble enzyme at high level in Escherichia coli (90–100 mg/L of culture). NiFMO is relatively thermostable (melting temperature (Tm) of 51 °C), displays high organic solvent tolerance, and accepts a broad range of substrates. The crystal structure of NiFMO was solved at 1.8 Å resolution, which allows future structure-based enzyme engineering. Altogether, NiFMO represents an interesting newly discovered enzyme with the appropriate features to develop into an industrially applied biocatalyst.

Keywords

Monooxygenase Thermostability Indigo bioproduction 

Notes

Acknowledgments

We thank Callum R. Nicoll for his help in the project.

Funding information

Nikola Lončar was supported by the NWO-LIFT project Indigreen. Gautier Bailleul received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant Oxytrain, agreement No 722390. The financial support of the Fondazione Cariplo (grant 2015-0406) is acknowledged.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alfieri A, Malito E, Orru R, Fraaije MW, Mattevi A (2008) Revealing the moonlighting role of NADP in the structure of a flavin-containing monooxygenase. Proc Natl Acad Sci U S A 105:6572–6577.  https://doi.org/10.1073/pnas.0800859105 CrossRefGoogle Scholar
  2. Aliverti A, Curti B, Vanoni MA (1999) Identifying and quantitating FAD and FMN in simple and iron-sulfur-containing flavoproteins. In: Chapman SK, Reid GA (eds) Methods in molecular biology, vol. 131: Flavoprotein Protocols, pp 9–23.  https://doi.org/10.1385/1-59259-266-X:9
  3. Ameria SP, Jung HS, Kim HS, Han SS, Kim HS, Lee JH (2018) Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin. Biotechnol Lett 37:1637–1644.  https://doi.org/10.1007/s10529-015-1824-2 CrossRefGoogle Scholar
  4. Beaty NB, Ballou DP (1981) The oxidative half-reaction of liver microsomal FAD-containing monooxygenase. J Biol Chem 256:4619–4625Google Scholar
  5. Cashman JR (2005) Some distinctions between flavin-containing and cytochrome P450 monooxygenases. Biochem Biophys Res Commun 338:599–604.  https://doi.org/10.1016/j.bbrc.2005.08.009 CrossRefGoogle Scholar
  6. Cashman JR, Zhang J (2006) Human flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol 46:65–100.  https://doi.org/10.1146/annurev.pharmtox.46.120604.141043 CrossRefGoogle Scholar
  7. Cho HJ, Cho HY, Kim KJ, Kim MH, Kim SW, Kang BS (2011) Structural and functional analysis of bacterial flavin-containing monooxygenase reveals its ping-pong-type reaction mechanism. J Struct Biol 175:39–48.  https://doi.org/10.1016/j.jsb.2011.04.007 CrossRefGoogle Scholar
  8. Choi HS, Kim JK, Cho EH, Kim YC, Kim JI, Kim SW (2003) A novel flavin-containing monooxygenase from Methylophaga sp strain SK1 and its indigo synthesis in Escherichia coli. Biochem Biophys Res Commun 306:930–936.  https://doi.org/10.1016/S0006-291X(03)01087-8 CrossRefGoogle Scholar
  9. Costantini S, Colonna G, Facchiano AM (2008) ESBRI: a web server for evaluating saltbridges in proteins. Bioinformation 3:137–138.  https://doi.org/10.1007/s10529-015-1824-2 CrossRefGoogle Scholar
  10. Dimitriu PA, Shukla SK, Conradt J, Márquez MC, Ventosa A, Maglia A, Peyton BM, Pinkart HC, Mormile MR (2005) Nitrincola lacisaponensis gen. Nov., sp. nov., a novel alkaliphilic bacterium isolated from an alkaline, saline lake. Int J Syst Evol Microbiol 55:2273–2278.  https://doi.org/10.1099/ijs.0.63647-0 CrossRefGoogle Scholar
  11. Dodson EJ, Murshudov GN, Vagin AA (1996) Description of program using maximum likelihood residual for macromolecular refinement, illustrated by several examples. Acta Crystallogr Sect A: Found Crystallogr 52:C85–C85.  https://doi.org/10.1107/S0907444911001314 CrossRefGoogle Scholar
  12. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D: Biol Crystallogr 60:2126–2132.  https://doi.org/10.1107/S0907444904019158 CrossRefGoogle Scholar
  13. Fiorentini F, Geier M, Binda C, Winkler M, Faber K, Hall M, Mattevi A (2016) Biocatalytic characterization of human FMO5: unearthing Baeyer-Villiger reactions in humans. ACS Chem Biol 11:1039–1048.  https://doi.org/10.1021/acschembio.5b01016 CrossRefGoogle Scholar
  14. Forneris F, Orru R, Bonivento D, Chiarelli LR, Mattevi A (2009) ThermoFAD, a Thermofluor-adapted flavin ad hoc detection system for protein folding and ligand binding. FEBS J 276:2833–2840.  https://doi.org/10.1111/j.1742-4658.2009.07006.x CrossRefGoogle Scholar
  15. Gul T, Krzek M, Permentier HP, Fraaije MW, Bischoff R (2016) Microbial flavoprotein monooxygenases as mimics of mammalian flavin-containing monooxygenases for the enantioselective preparation of drug metabolites. Drug Metab Dispos 44:1270–1276.  https://doi.org/10.1124/dmd.115.069104 CrossRefGoogle Scholar
  16. Han GH, Bang SE, Babu BK, Chang M, Shin H, Kim SW (2011) Bio-indigo production in two different fermentation systems using recombinant Escherichia coli cells harboring a flavin-containing monooxygenase gene (fmo). Process Biochem 46:788–791.  https://doi.org/10.1016/j.procbio.2010.10.015 CrossRefGoogle Scholar
  17. Hsu TM, Welner DH, Russ ZN, Cervantes B, Prathuri RL, Adams PD, Dueber JE (2018) Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nat Chem Biol 14:256–261.  https://doi.org/10.1038/nchembio.2552 CrossRefGoogle Scholar
  18. Kabsch W (2010) XDS. Acta Crystallogr Sect D: Biol Crystallogr 66:125–132.  https://doi.org/10.1107/S0907444909047337 CrossRefGoogle Scholar
  19. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797.  https://doi.org/10.1016/j.jmb.2007.05.022 CrossRefGoogle Scholar
  20. Krueger SK, Williams DE (2005) Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 106:357–387.  https://doi.org/10.1016/j.pharmthera.2005.01.001 CrossRefGoogle Scholar
  21. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674.  https://doi.org/10.1107/S0021889807021206 CrossRefGoogle Scholar
  22. Orru R, Pazmiño DE, Fraaije MW, Mattevi A (2010) Joint functions of protein residues and NADP(H) in oxygen activation by flavin-containing monooxygenase. J Biol Chem 285:35021–35028.  https://doi.org/10.1074/jbc.M110.161372 CrossRefGoogle Scholar
  23. Phillips IR, Shephard EA (2016) Drug metabolism by flavin-containing monooxygenases of human and mouse. Expert Opin Drug Metab Toxicol 13:167–181.  https://doi.org/10.1080/17425255.2017.1239718 CrossRefGoogle Scholar
  24. Rioz-Martínez A, Kopacz M, de Gonzalo G, Torres Pazmiño DE, Gotor V, Fraaije MW (2011) Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase. Org Biomol Chem 9:1337–1341.  https://doi.org/10.1039/c0ob00988a CrossRefGoogle Scholar
  25. Romero E, Castellanos JR, Mattevi A, Fraaije MW (2016) Characterization and crystal structure of a robust cyclohexanone monooxygenase. Angew Chem Int Ed Engl 55:15852–15855.  https://doi.org/10.1002/anie.201608951 CrossRefGoogle Scholar
  26. Romero E, Gómez Castellanos JR, Gadda G, Fraaije MW, Mattevi A (2018) Same substrate, many reactions: oxygen activation in flavoenzymes. Chem Rev 118:1742–1769.  https://doi.org/10.1021/acs.chemrev.7b00650 CrossRefGoogle Scholar
  27. Siddens LK, Krueger SK, Henderson MC, Williams DE (2014) Mammalian flavin-containing monooxygenase (FMO) as a source of hydrogen peroxide. Biochem Pharmacol 89:141–147.  https://doi.org/10.1016/j.bcp.2014.02.006 CrossRefGoogle Scholar
  28. van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689.  https://doi.org/10.1016/j.jbiotec.2006.03.044 CrossRefGoogle Scholar
  29. Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269:631–643.  https://doi.org/10.1006/jmbi.1997.1042 CrossRefGoogle Scholar
  30. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr Sect D: Biol Crystallogr 67:235–242.  https://doi.org/10.1107/S0907444910045749 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Groningen Enzyme and Cofactor Collection (GECCO)University of GroningenGroningenThe Netherlands
  2. 2.Molecular Enzymology GroupUniversity of GroningenGroningenThe Netherlands
  3. 3.Structural Biology Lab, Department of Biology and Biotechnology “L. Spallanzani”University of PaviaPaviaItaly

Personalised recommendations