Advertisement

Methanogenic degradation of branched alkanes in enrichment cultures of production water from a high-temperature petroleum reservoir

  • Jing Chen
  • Yi-Fan Liu
  • Lei Zhou
  • Serge Maurice Mbadinga
  • Tao Yang
  • Jing Zhou
  • Jin-Feng Liu
  • Shi-Zhong Yang
  • Ji-Dong Gu
  • Bo-Zhong MuEmail author
Environmental biotechnology
  • 58 Downloads

Abstract

Branched alkanes are important constituents of crude oil and are usually regarded as resistant to microbial degradation, resulting in little knowledge of biochemical processes involved in anaerobic branched alkanes biodegradation. Here, we initiated an incubation study by amendment of iso-C9 (2-methyl, 3-methyl, and 4-methyloctane) as substrates for methanogenic degradation in production water from a high-temperature petroleum reservoir. Over an incubation period of 367 days, significant methanogenesis was observed in samples amended with these branched alkanes. The strong methanogenic activity only observed in iso-C9 amendments suggested the presence of microbial transformation from iso-alkanes into methane. GC-MS-based examination of the original production water identified an intermediate tentatively to be iso-C9-like alkylsuccinate, but was not detected in the enrichment cultures, combined with the successful amplification of assA functional gene in inoculating samples, revealing the ability of anaerobic biodegradation of iso-C9 via fumarate addition pathway. Microorganisms affiliated with members of the Firmicutes, Synergistetes, and methanogens of genus Methanothermobacter spp. were highly enriched in samples amended with iso-C9. The co-occurrence of known syntrophic acetate oxidizers Thermoacetogenium spp. and Methanothermobacter spp. (known hydrogenotrophic methanogens) indicates a potential syntrophic acetate oxidation associated with the methanogenic biodegradation of iso-C9. These results provide some useful information on the potential biodegradation of branched alkanes via methanogenesis and also suggest that branched alkanes are likely activated via fumarate addition in high-temperature petroleum reservoirs.

Keywords

Alkylsuccinate iso-Alkanes or branched alkanes High-temperature petroleum reservoir Methanogenic degradation assA gene 

Notes

Acknowledgement

The authors are grateful to the management of Shengli Oilfield for sampling support.

Funding information

This work was supported by the National Nature Science Foundation of China (Grants No. 41530318, 41373070), NSFC/RGC Joint Research Fund (No. 41161160560), Shanghai Fundamental Research Program (15JC1401400), and the Fundamental Research Funds for the Central Universities (No. 222201817017).

Compliance with ethical standards

This article does not contain any studies with human participants or animals by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2018_9574_MOESM1_ESM.pdf (1.8 mb)
ESM 1 (PDF 1862 kb)

References

  1. Abu Laban N, Dao A, Semple K, Foght J (2015) Biodegradation of C7 and C8 iso-alkanes under methanogenic conditions. Environ Microbiol 17:4898–4915.  https://doi.org/10.1111/1462-2920.12643 CrossRefGoogle Scholar
  2. Agrawal A, Gieg LM (2013) In situ detection of anaerobic alkane metabolites in subsurface environments. Front Microbiol 4:140.  https://doi.org/10.3389/fmicb.2013.00140 CrossRefGoogle Scholar
  3. Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431:291.  https://doi.org/10.1038/nature02922 CrossRefGoogle Scholar
  4. Aitken CM, Jones DM, Maguire MJ, Gray ND, Sherry A, Bowler BFJ, Ditchfield AK, Larter SR, Head IM (2013) Evidence that crude oil alkane activation proceeds by different mechanisms under sulfate-reducing and methanogenic conditions. Geochim Cosmochim Acta 109:162–174.  https://doi.org/10.1016/j.gca.2013.01.031 CrossRefGoogle Scholar
  5. Bian XY, Mbadinga SM, Yang SZ, Gu JD, Ye RQ, Mu BZ (2014) Synthesis of anaerobic degradation biomarkers alkyl-, aryl- and cycloalkylsuccinic acids and their mass spectral characteristics. Eur J Mass Spectrom 20:287–297.  https://doi.org/10.1255/ejms.1280 CrossRefGoogle Scholar
  6. Bian XY, Mbadinga SM, Liu YF, Yang SZ, Liu JF, Ye RQ, Gu JD, Mu BZ (2015) Insights into the anaerobic biodegradation pathway of n-alkanes in oil reservoirs by detection of signature metabolites. Sci Rep 5:9801.  https://doi.org/10.1038/srep09801 CrossRefGoogle Scholar
  7. Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Nazina TN, Ivoilov VS, Belyaev SS, Boulygina ES, Lysov YP, Perov AN, Mirzabekov AD, Hippe H, Stackebrandt E, L’Haridon S, Jeanthon C (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69:6143–6151.  https://doi.org/10.1128/aem.69.10.6143-6151.2003 CrossRefGoogle Scholar
  8. Bregnard T, Häner A, Höhener P, Zeyer J (1997) Anaerobic degradation of pristane in nitrate-reducing microcosms and enrichment cultures. Appl Environ Microbiol 63:2077–2081Google Scholar
  9. Callaghan AV, Davidova IA, Savage-Ashlock K, Parisi VA, Gieg LM, Suflita JM, Kukor JJ, Wawrik B (2010) Diversity of benzyl-and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ Sci Technol 44:7287–7294.  https://doi.org/10.1021/es1002023 CrossRefGoogle Scholar
  10. Callaghan AV, Morris BE, Pereira IA, Mclnerney MJ, Austin RN, Groves JT, Kukor JJ, Suflita JM, Young LY, Zylstra GJ, Wawrik B (2012) The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation. Environ Microbiol 14:101–113.  https://doi.org/10.1111/j.1462-2920.2011.02516.x CrossRefGoogle Scholar
  11. Callaghan AV, Wawrik B, Ni Chadhain SM, Young LY, Zylstra GJ (2008) Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochem Biophys Res Commun 366:142–148.  https://doi.org/10.1016/j.bbrc.2007.11.094 CrossRefGoogle Scholar
  12. Cao Y, Li J, Jiang N, Dong X (2014) Mechanism for stabilizing mRNAs involved in methanol-dependent methanogenesis of cold-adaptive Methanosarcina mazei zm-15. Appl Environ Microbiol 80:1291–1298.  https://doi.org/10.1128/AEM.03495-13 CrossRefGoogle Scholar
  13. Cheng L, Dai L, Li X, Zhang H, Lu Y (2011) Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the Shengli oil field. Appl Environ Microbiol 77:5212–5219.  https://doi.org/10.1128/AEM.00210-11 CrossRefGoogle Scholar
  14. Cheng L, Ding C, Li Q, He Q, Dai L, Zhang H (2013) DNA-SIP reveals that Syntrophaceae play an important role in methanogenic hexadecane degradation. PLoS One 8:e66784.  https://doi.org/10.1371/journal.pone.0066784 CrossRefGoogle Scholar
  15. Dawson KS, Schaperdoth I, Freeman KH, Macalady JL (2013) Anaerobic biodegradation of the isoprenoid biomarkers pristane and phytane. Org Geochem 65:118–126.  https://doi.org/10.1016/j.orggeochem.2013.10.010 CrossRefGoogle Scholar
  16. Dolfing J, Larter SR, Head IM (2008) Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2:442–452.  https://doi.org/10.1038/ismej.2007.111 CrossRefGoogle Scholar
  17. Dong H, Dong H, Zhang Z, Sun S, Wang W, Ke M, Song Z, Zhang Z, Wang J, Wu W-M (2016) Microbial community dynamics in an anaerobic biofilm reactor treating heavy oil refinery wastewater. RSC Adv 6:107442–107451.  https://doi.org/10.1039/c6ra22469e CrossRefGoogle Scholar
  18. Embree M, Nagarajan H, Movahedi N, Chitsaz H, Zengler K (2014) Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community. ISME J 8:757–767.  https://doi.org/10.1038/ismej.2013.187 CrossRefGoogle Scholar
  19. Fowler SJ, Toth CR, Gieg LM (2016) Community structure in methanogenic enrichments provides insight into syntrophic interactions in hydrocarbon-impacted environments. Front Microbiol 7:562.  https://doi.org/10.3389/fmicb.2016.00562 CrossRefGoogle Scholar
  20. Gieg LM, Fowler SJ, Berdugo-Clavijo C (2014) Syntrophic biodegradation of hydrocarbon contaminants. Curr Opin Biotechnol 27:21–29.  https://doi.org/10.1016/j.copbio.2013.09.002 CrossRefGoogle Scholar
  21. Gieg LM, Toth CRA (2017) Signature metabolite analysis to determine in situ anaerobic hydrocarbon biodegradation Anaerobic utilization of hydrocarbons, oils, and lipids. pp 1–30Google Scholar
  22. Gittel A, Donhauser J, Røy H, Girguis PR, Jørgensen BB, Kjeldsen KU (2015) Ubiquitous presence and novel diversity of anaerobic alkane degraders in cold marine sediments. Front Microbiol 6:1414.  https://doi.org/10.3389/fmicb.2015.01414 CrossRefGoogle Scholar
  23. Gray N, Sherry A, Hubert C, Dolfing J, Head I (2010) Methanogenic degradation of petroleum hydrocarbons in subsurface environments: remediation, heavy oil formation, and energy recovery. Adv Appl Microbiol. 72 Elsevier, pp 137–161Google Scholar
  24. Grossi V, Raphel D, Hirschler-Réa A, Gilewicz M, Mouzdahir A, Bertrand J-C, Rontani J-F (2000) Anaerobic biodegradation of pristane by a marine sedimentary bacterial and/or archaeal community. Org Geochem 31:769–772.  https://doi.org/10.1016/S0146-6380(00)00060-7 CrossRefGoogle Scholar
  25. Grundmann O, Behrends A, Rabus R, Amann J, Halder T, Heider J, Widdel F (2008) Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environ Microbiol 10:376–385.  https://doi.org/10.1111/j.1462-2920.2007.01458.x CrossRefGoogle Scholar
  26. Gruner A, Jarling R, Vieth-Hillebrand A, Mangelsdorf K, Janka C, van der Kraan GM, Köhler T, Morris BEL, Wilkes H (2017) Tracing microbial hydrocarbon transformation processes in a high temperature petroleum reservoir using signature metabolites. Org Geochem 108:82–93.  https://doi.org/10.1016/j.orggeochem.2017.03.003 CrossRefGoogle Scholar
  27. Hanselmann K (1991) Microbial energetics applied to waste repositories. Cell Mol Life Sci 47:645–687.  https://doi.org/10.1007/BF01958816 CrossRefGoogle Scholar
  28. Hasinger M, Scherr KE, Lundaa T, Bräuer L, Zach C, Loibner AP (2012) Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate-reducing conditions. J Biotechnol 157:490–498.  https://doi.org/10.1016/j.jbiotec.2011.09.027 CrossRefGoogle Scholar
  29. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344.  https://doi.org/10.1038/nature02134 CrossRefGoogle Scholar
  30. Heider J (2007) Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 11:188–194.  https://doi.org/10.1016/j.cbpa.2007.02.027 CrossRefGoogle Scholar
  31. Heider J, Schühle K (2013) Anaerobic biodegradation of hydrocarbons including methane The Prokaryotes. Springer, pp 605–634Google Scholar
  32. Helgeson HC, Owens CE, Knox AM, Richard L (1998) Calculation of the standard molal thermodynamic properties of crystalline, liquid, and gas organic molecules at high temperatures and pressures. Geochim Cosmochim Acta 62:985–1081.  https://doi.org/10.1016/S0016-7037(97)00219-6 CrossRefGoogle Scholar
  33. Jarling R, Kühner S, Basílio Janke E, Gruner A, Drozdowska M, Golding BT, Rabus R, Wilkes H (2015) Versatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio-and stereo-chemistry of activation reactions. Front Microbiol 6:880.  https://doi.org/10.3389/fmicb.2015.00880 CrossRefGoogle Scholar
  34. Jiménez N, Richnow HH, Vogt C, Treude T, Krüger M (2016) Methanogenic hydrocarbon degradation: evidence from field and laboratory studies. J Mol Microbiol Biotechnol 26:227–242.  https://doi.org/10.1159/000441679 CrossRefGoogle Scholar
  35. Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BF, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180.  https://doi.org/10.1038/nature06484 CrossRefGoogle Scholar
  36. Khelifi N, Amin Ali O, Roche P, Grossi V, Brochier-Armanet C, Valette O, Ollivier B, Dolla A, Hirschler-Réa A (2014) Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus. ISME J 8:2153–2166.  https://doi.org/10.1038/ismej.2014.58 CrossRefGoogle Scholar
  37. Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV, Richter M, Tegetmeyer HE, Riedel D, Richnow HH, Adrian L, Reemtsma T, Lechtenfeld OJ, Musat F (2016) Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396–401.  https://doi.org/10.1038/nature20152 CrossRefGoogle Scholar
  38. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315Google Scholar
  39. Li XX, Mbadinga SM, Liu JF, Zhou L, Yang SZ, Gu JD, Mu BZ (2017a) Microbiota and their affiliation with physiochemical characteristics of different subsurface petroleum reservoirs. Int Biodeterior Biodegrad 120:170–185.  https://doi.org/10.1016/j.ibiod.2017.02.005 CrossRefGoogle Scholar
  40. Li XX, Liu JF, Zhou L, Mbadinga SM, Yang SZ, Gu JD, Mu BZ (2017b) Diversity and composition of sulfate-reducing microbial communities based on genomic DNA and RNA transcription in production water of high temperature and corrosive oil reservoir. Front Microbiol 8:1011.  https://doi.org/10.3389/fmicb.2017.01011 CrossRefGoogle Scholar
  41. Liang B, Wang LY, Mbadinga SM, Liu JF, Yang SZ, Gu JD, Mu BZ (2015) Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5:117.  https://doi.org/10.1186/s13568-015-0117-4 CrossRefGoogle Scholar
  42. Liang B, Wang LY, Zhou Z, Mbadinga SM, Zhou L, Liu JF, Yang SZ, Gu JD, Mu BZ (2016) High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in association with Methanoculleus spp. in a long-term incubation of n-alkanes-degrading methanogenic enrichment culture. Front Microbiol 7:1431.  https://doi.org/10.3389/fmicb.2016.01431
  43. Maestrojuán GM, Boone JE, Mah RA, Menaia JA, Sachs MS, Boone DR (1992) Taxonomy and halotolerance of mesophilic Methanosarcina strains, assignment of strains to species, and synonymy of Methanosarcina mazei and Methanosarcina frisia. Int J Syst Evol Microbiol 42:561–567.  https://doi.org/10.1099/00207713-42-4-561 Google Scholar
  44. Mayumi D, Dolfing J, Sakata S, Maeda H, Miyagawa Y, Ikarashi M, Tamaki H, Takeuchi M, Nakatsu CH, Kamagata Y (2013) Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs. Nat Commun 4.  https://doi.org/10.1038/ncomms2998
  45. Mayumi D, Mochimaru H, Yoshioka H, Sakata S, Maeda H, Miyagawa Y, Ikarashi M, Takeuchi M, Kamagata Y (2011) Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan). Environ Microbiol 13:1995–2006.  https://doi.org/10.1111/j.1462-2920.2010.02338.x CrossRefGoogle Scholar
  46. Mbadinga SM, Li KP, Zhou L, Wang LY, Yang SZ, Liu JF, Gu JD, Mu BZ (2012) Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir. Appl Microbiol Biotechnol 96:531–542.  https://doi.org/10.1007/s00253-011-3828-8 CrossRefGoogle Scholar
  47. Mbadinga SM, Wang LY, Zhou L, Liu JF, Gu JD, Mu BZ (2011) Microbial communities involved in anaerobic degradation of alkanes. Int Biodeterior Biodegrad 65:1–13.  https://doi.org/10.1016/j.ibiod.2010.11.009 CrossRefGoogle Scholar
  48. Miget R, Oppenheimer C, Kator H, LaRock P Microbial degradation of normal paraffin hydrocarbons in crude oil. In: International Oil Spill Conference, 1969. vol 1969. American Petroleum Institute, p 327–331Google Scholar
  49. Mohamad Shahimin MF, Siddique T (2017a) Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings. Sci Total Environ 583:115–122.  https://doi.org/10.1016/j.scitotenv.2017.01.038 CrossRefGoogle Scholar
  50. Mohamad Shahimin MF, Siddique T (2017b) Sequential biodegradation of complex naphtha hydrocarbons under methanogenic conditions in two different oil sands tailings. Environ Pollut 221:398–406.  https://doi.org/10.1016/j.envpol.2016.12.002 CrossRefGoogle Scholar
  51. Newcombe RG (1998) Interval estimation for the difference between independent proportions: comparison of eleven methods. Stat Med 17:873–890.  https://doi.org/10.1002/(sici)1097-0258(19980430)17:8<873::aid-sim779>3.0.co;2-i CrossRefGoogle Scholar
  52. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274.  https://doi.org/10.1093/molbev/msu300 CrossRefGoogle Scholar
  53. Pan P, Hong B, Mbadinga SM, Wang LY, Liu JF, Yang SZ, Gu JD, Mu BZ (2017) Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir. Appl Microbiol Biotechnol 101:7053–7063.  https://doi.org/10.1007/s00253-017-8422-2 CrossRefGoogle Scholar
  54. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124.  https://doi.org/10.1093/bioinformatics/btu494 CrossRefGoogle Scholar
  55. Pirnik M, Atlas R, Bartha R (1974) Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. J Bacteriol 119:868–878Google Scholar
  56. Prince RC, Suflita JM (2007) Anaerobic biodegradation of natural gas condensate can be stimulated by the addition of gasoline. Biodegradation 18:515–523.  https://doi.org/10.1007/s10532-006-9084-4 CrossRefGoogle Scholar
  57. Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, Ermler U, Golding BT, Gunsalus RP, Kroneck PMH, Krüger M, Lueders T, Martins BM, Musat F, Richnow HH, Schink B, Seifert J, Szaleniec M, Treude T, Ullmann GM, Vogt C, von Bergen M, Wilkes H (2016) Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 26:5–28.  https://doi.org/10.1159/000443997 CrossRefGoogle Scholar
  58. Rabus R, Jarling R, Lahme S, Kühner S, Heider J, Widdel F, Wilkes H (2011) Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria. Environ Microbiol 13:2576–2586.  https://doi.org/10.1111/j.1462-2920.2011.02529.x CrossRefGoogle Scholar
  59. Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F (2001) Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl) succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol 183:1707–1715.  https://doi.org/10.1128/JB.183.5.1707-1715.2001 CrossRefGoogle Scholar
  60. Rivals I, Personnaz L, Taing L, Potier MC (2006) Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 23:401–407.  https://doi.org/10.1093/bioinformatics/btl633 CrossRefGoogle Scholar
  61. Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455.  https://doi.org/10.1038/372455a0 CrossRefGoogle Scholar
  62. Siddique T, Fedorak PM, MacKinnon MD, Foght JM (2007) Metabolism of BTEX and naphtha compounds to methane in oil sands tailings. Environ Sci Technol 41:2350–2356.  https://doi.org/10.1021/es062852q CrossRefGoogle Scholar
  63. Siddique T, Mohamad Shahimin MF, Zamir S, Semple K, Li C, Foght JM (2015) Long-term incubation reveals methanogenic biodegradation of C5 and C6 iso-alkanes in oil sands tailings. Environ Sci Technol 49:14732–14739.  https://doi.org/10.1021/acs.est.5b04370 CrossRefGoogle Scholar
  64. Siddique T, Penner T, Semple K, Foght JM (2011) Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 45:5892–5899.  https://doi.org/10.1021/es200649t CrossRefGoogle Scholar
  65. Sun W, Cupples AM (2012) Diversity of five anaerobic toluene-degrading microbial communities investigated using stable isotope probing. Appl Environ Microbiol 78:972–980.  https://doi.org/10.1128/aem.06770-11 CrossRefGoogle Scholar
  66. Tan B, Charchuk R, Li C, Nesbø C, Abu Laban N, Foght J (2014a) Draft genome sequence of uncultivated Firmicutes (Peptococcaceae SCADC) single cells sorted from methanogenic alkane-degrading cultures. Genome Announc 2:e00909–e00914.  https://doi.org/10.1128/genomeA.00909-14 Google Scholar
  67. Tan B, de Araújo ESR, Rozycki T, Nesbø C, Foght J (2014b) Draft genome sequences of three Smithella spp. obtained from a methanogenic alkane-degrading culture and oil field produced water. Genome Announc 2:e01085–e01014.  https://doi.org/10.1128/genomeA.01085-14 Google Scholar
  68. Tan B, Nesbø C, Foght J (2014c) Re-analysis of omics data indicates Smithella may degrade alkanes by addition to fumarate under methanogenic conditions. ISME J 8:2353–2356.  https://doi.org/10.1038/ismej.2014.87 CrossRefGoogle Scholar
  69. Tan B, Semple K, Foght J (2015) Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition. FEMS Microbiol Ecol:91.  https://doi.org/10.1093/femsec/
  70. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180Google Scholar
  71. von Netzer F, Pilloni G, Kleindienst S, Krüger M, Knittel K, Gründger F, Lueders T (2013) Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 79:543–552.  https://doi.org/10.1128/AEM.02362-12 CrossRefGoogle Scholar
  72. Wang LY, Gao CX, Mbadinga SM, Zhou L, Liu JF, Gu JD, Mu BZ (2011) Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation. Int Biodeterior Biodegrad 65:444–450.  https://doi.org/10.1016/j.ibiod.2010.12.010 CrossRefGoogle Scholar
  73. Wang LY, Duan RY, Liu JF, Yang SZ, Gu JD, Mu BZ (2012) Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures. Biogeosciences 9:4645–4659.  https://doi.org/10.5194/bg-9-4645-2012 CrossRefGoogle Scholar
  74. Wawrik B, Marks CR, Davidova IA, Mclnerney MJ, Pruitt S, Duncan KE, Suflita JM, Callaghan AV (2016) Methanogenic paraffin degradation proceeds via alkane addition to fumarate by ‘Smithella’ spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens. Environ Microbiol 18:2604–2619.  https://doi.org/10.1111/1462-2920.13374 CrossRefGoogle Scholar
  75. Wilkes H, Kühner S, Bolm C, Fischer T, Classen A, Widdel F, Rabus R (2003) Formation of n-alkane- and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Org Geochem 34:1313–1323.  https://doi.org/10.1016/s0146-6380(03)00099-8 CrossRefGoogle Scholar
  76. Wilkes H, Rabus R, Fischer T, Armstroff A, Behrends A, Widdel F (2002) Anaerobic degradation of n-hexane in a denitrifying bacterium: further degradation of the initial intermediate (1-methylpentyl) succinate via C-skeleton rearrangement. Arch Microbiol 177:235–243.  https://doi.org/10.1007/s00203-001-0381-3 CrossRefGoogle Scholar
  77. Winderl C, Penning H, von Netzer F, Meckenstock RU, Lueders T (2010) DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment. ISME J 4:1314–1325.  https://doi.org/10.1038/ismej.2010.54 CrossRefGoogle Scholar
  78. Xia W, Shen W, Yu L, Zheng C, Yu W, Tang Y (2016) Conversion of petroleum to methane by the indigenous methanogenic consortia for oil recovery in heavy oil reservoir. Appl Energy 171:646–655.  https://doi.org/10.1016/j.apenergy.2016.03.059 CrossRefGoogle Scholar
  79. Yao C, Lei G, Ma J, Zhao F, Cao G (2012) Laboratory experiment, modeling and field application of indigenous microbial flooding. J Pet Sci Eng 90–91:39–47.  https://doi.org/10.1016/j.petrol.2012.04.001 CrossRefGoogle Scholar
  80. Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266.  https://doi.org/10.1038/45777 CrossRefGoogle Scholar
  81. Zhou L, Li KP, Mbadinga SM, Yang SZ, Gu JD, Mu BZ (2012) Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques. Ecotoxicology 21:1680–1691.  https://doi.org/10.1007/s10646-012-0949-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jing Chen
    • 1
  • Yi-Fan Liu
    • 1
  • Lei Zhou
    • 1
  • Serge Maurice Mbadinga
    • 1
  • Tao Yang
    • 1
  • Jing Zhou
    • 1
  • Jin-Feng Liu
    • 1
  • Shi-Zhong Yang
    • 1
  • Ji-Dong Gu
    • 2
  • Bo-Zhong Mu
    • 1
    • 3
    Email author
  1. 1.State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.School of Biological SciencesThe University of Hong KongHong Kong Special Administrative RegionPeople’s Republic of China
  3. 3.Engineering Research Center of Microbial Enhanced Oil RecoveryEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations