Applied Microbiology and Biotechnology

, Volume 102, Issue 4, pp 1837–1846 | Cite as

The specific effect of gallic acid on Escherichia coli biofilm formation by regulating pgaABCD genes expression

  • Jiamu Kang
  • Qianqian Li
  • Liu LiuEmail author
  • Wenyuan Jin
  • Jingfan Wang
  • Yuyang Sun
Applied genetics and molecular biotechnology


Escherichia coli (E. coli) is associated with an array of health-threatening contaminations, some of which are related to biofilm states. The pgaABCD-encoded poly-beta-1,6-N-acetyl-D-glucosamine (PGA) polymer plays an important role in biofilm formation. This study was conducted to determine the inhibitory effect of gallic acid (GA) against E. coli biofilm formation. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of GA against planktonic E. coli were 0.5 and 4 mg/mL, and minimal biofilm inhibitory concentration and minimal biofilm eradication concentration values of GA against E. coli in biofilms were 2 and 8 mg/mL, respectively. Quantitative crystal violet staining of biofilms and ESEM images clearly indicate that GA effectively, dose-dependently inhibited biofilm formation. CFU counting and confocal laser scanning microscopy measurements showed that GA significantly reduced viable bacteria in the biofilm. The contents of polysaccharide slime, protein, and DNA in the E. coli biofilm also decreased. qRT-PCR data showed that at the sub-MIC level of GA (0.25 mg/mL) and expression of pgaABC genes was downregulated, while pgaD gene expression was upregulated. The sub-MBC level of GA (2 mg/mL) significantly suppressed the pgaABCD genes. Our results altogether demonstrate that GA inhibited viable bacteria and E. coli biofilm formation, marking a novel approach to the prevention and treatment of biofilm-related infections in the food industry.


Gallic acid Escherichia coli Biofilm pgaABCD genes Food safety 


Funding information

The authors acknowledge the financial support from National Natural Science Foundation of China (grant no. 31301472) and Project Funded by Fundamental Research Funds for the Central Universities (no. 3102016QD075).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Boehm A, Steiner S, Zaehringer F, Casanova A, Hamburger F, Ritz D, Keck W, Ackermann M, Schirmer T, Jenal U (2009) Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Mol Microbiol 72(6):1500–1516. CrossRefPubMedGoogle Scholar
  2. Borges A, Saavedra MJ, Simões M (2012) The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 28(7):755–767. CrossRefPubMedGoogle Scholar
  3. Cerca N, Jefferson KK (2008) Effect of growth conditions on poly- N -acetylglucosamine expression and biofilm formation in Escherichia coli. FEMS Microbiol Lett 283(1):36–41. CrossRefPubMedGoogle Scholar
  4. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38(6):421–464. CrossRefPubMedGoogle Scholar
  5. Coughlan LM, Cotter PD, Hill C, Alvarezordóñez A (2016) New weapons to fight old enemies: novel strategies for the (bio)control of bacterial biofilms in the food industry. Front Microbiol 7(e26278):1641. PubMedPubMedCentralGoogle Scholar
  6. Cui H, Ma C, Lin L (2016) Synergetic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157:H7 biofilms on lettuce. Food Control 66:8–16. CrossRefGoogle Scholar
  7. Cui H, Yuan L, Li W, Lin L (2017) Edible film incorporated with chitosan and Artemisia annua oil nanoliposomes for inactivation of Escherichia coli O157:H7 on cherry tomato. Int J Food Sci Technol 52(3):687–698. CrossRefGoogle Scholar
  8. Díaz-Gómez R, López-Solís R, Obreque-Slier E, Toledo-Araya H (2013) Comparative antibacterial effect of gallic acid and catechin against Helicobacter pylori. LWT Food Sci Technol 54(2):331–335. CrossRefGoogle Scholar
  9. Doucet FJ, Lead JR, Maguire L, Achterberg EP, Millward GE (2005) Visualisation of natural aquatic colloids and particles—a comparison of conventional high vacuum and environmental scanning electron microscopy. J Environ Monit 7(2):115–121. CrossRefPubMedGoogle Scholar
  10. Duffy LL, Grau FH, Vanderlinde PB (2000) Acid resistance of enterohaemorrhagic and generic Escherichia coli associated with foodborne disease and meat. Int J Food Microbiol 60(1):83–89. CrossRefPubMedGoogle Scholar
  11. Dynes JJ, Lawrence JR, Korber DR, Swerhone GD, Leppard GG, Hitchcock AP (2009) Morphological and biochemical changes in Pseudomonas fluorescens biofilms induced by sub-inhibitory exposure to antimicrobial agents. Can J Microbiol 55(2):163–178. CrossRefPubMedGoogle Scholar
  12. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633. CrossRefPubMedGoogle Scholar
  13. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332. CrossRefPubMedGoogle Scholar
  14. Itoh Y, Rice JD, Goller C, Pannuri A, Taylor J, Meisner J, Beveridge TJ, Preston JF 3rd, Romeo T (2008) Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-beta-1,6-N-acetyl-D-glucosamine. J Bacteriol 190(10):3670–3680. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jagani S, Chelikani R, Kim DS (2009) Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Biofouling 25(4):321–324. CrossRefPubMedGoogle Scholar
  16. Kulshrestha S, Khan S, Hasan S, Khan ME, Misba L, Khan AU (2016) Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Appl Microbiol Biotechnol 100(4):1901–1914. CrossRefPubMedGoogle Scholar
  17. Lee JH, Kim YG, Cho HS, Ryu SY, Cho MH, Lee J (2014a) Coumarins reduce biofilm formation and the virulence of Escherichia coli O157:H7. Phytomedicine 21(8–9):1037–1042. CrossRefPubMedGoogle Scholar
  18. Lee JH, Kim YG, Ryu SY, Cho MH, Lee J (2014b) Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157:H7 and Staphylococcus aureus biofilm formation. Int J Food Microbiol 174:47–55. CrossRefPubMedGoogle Scholar
  19. Liao H, Zhang F, Liao X, Hu X, Chen Y, Deng L (2010) Analysis of Escherichia coli cell damage induced by HPCD using microscopies and fluorescent staining. Int J Food Microbiol 144(1):169–176. CrossRefPubMedGoogle Scholar
  20. Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr 3(3).
  21. Limpisophon K, Schleining G (2017) Use of gallic acid to enhance the antioxidant and mechanical properties of active fish gelatin film. J Food Sci 82(1):80–89. CrossRefPubMedGoogle Scholar
  22. Liu KY, Hu S, Chan BC, Wat EC, Lau CB, Hon KL, Fung KP, Leung PC, Hui PC, Lam CW, Wong CK (2013) Anti-inflammatory and anti-allergic activities of Pentaherb formula, Moutan Cortex (Danpi) and gallic acid. Molecules 18(3):2483–2500. CrossRefPubMedGoogle Scholar
  23. Liu M, Wu X, Li J, Liu L, Zhang R, Shao D, Du X (2017) The specific anti-biofilm effect of gallic acid on Staphylococcus aureus by regulating the expression of the ica operon. Food Control 73:613–618. CrossRefGoogle Scholar
  24. Negi PS (2012) Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. Int J Food Microbiol 156(1):7–17. CrossRefPubMedGoogle Scholar
  25. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H (2010) Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139(Suppl 1):S3–S15. CrossRefPubMedGoogle Scholar
  26. Oliveira KÁRD, Sousa JPD, Medeiros JADC, Magnani M, Júnior JPDS, Souza ELD (2015) Synergistic inhibition of bacteria associated with minimally processed vegetables in mixed culture by carvacrol and 1,8-cineole. Food Control 47:334–339. CrossRefGoogle Scholar
  27. Prakash B, Veeregowda BM, Krishnappa G (2003) Biofilms: a survival strategy of bacteria. Curr Sci India 85(9):1299–1307Google Scholar
  28. Raffaella C, Casettari L, Fagioli L, Cespi M, Bonacucina G, Baffone W (2017) Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions. Int J Food Microbiol 241:132–140. CrossRefGoogle Scholar
  29. Ryu JH, Beuchat LR (2005) Biofilm formation by Escherichia coli O157:H7 on stainless steel: effect of exopolysaccharide and Curli production on its resistance to chlorine. Appl Environ Microbiol 71(1):247–254. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Serra DO, Mika F, Richter AM, Hengge R (2016) The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curli fibre assembly and downregulating the biofilm regulator CsgD via the sigma(E)-dependent sRNA RybB. Mol Microbiol 101(1):136–151. CrossRefPubMedGoogle Scholar
  31. Shao D, Li J, Li J, Tang R, Liu L, Shi J, Huang Q, Yang H (2015) Inhibition of gallic acid on the growth and biofilm formation of Escherichia coli and Streptococcus mutans. J Food Sci 80(6):M1299–M1305. CrossRefPubMedGoogle Scholar
  32. Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S, Gabrani R (2016) Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 121(2):309–319. CrossRefPubMedGoogle Scholar
  33. Sivaranjani M, Prakash M, Gowrishankar S, Rathna J, Pandian SK, Ravi AV (2017) In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl Microbiol Biotechnol 101(8):3349–3359. CrossRefPubMedGoogle Scholar
  34. Sun X, Wang Z, Kadouh H, Zhou K (2014) The antimicrobial, mechanical, physical and structural properties of chitosan–gallic acid films. LWT Food Sci Technol 57(1):83–89. CrossRefGoogle Scholar
  35. Wang X, Preston JF, Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186(9):2724–2734. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Webber B, Canova R, Esper LM, Perdoncini G, Nascimento VPD, Pilotto F, Santos LRD, Rodrigues LB (2015) The use of vortex and ultrasound techniques for the in vitro removal of Salmonella spp. biofilms. Acta Sci Vet 43(1):1–5Google Scholar
  37. Wood TK, González Barrios AF, Herzberg M, Lee J (2006) Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol 72(2):361–367. CrossRefPubMedGoogle Scholar
  38. Yoon CH, Chung SJ, Lee SW, Park YB, Lee SK, Park MC (2013) Gallic acid, a natural polyphenolic acid, induces apoptosis and inhibits proinflammatory gene expressions in rheumatoid arthritis fibroblast-like synoviocytes. Joint Bone Spine 80(3):274–279. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiamu Kang
    • 1
  • Qianqian Li
    • 1
  • Liu Liu
    • 1
    Email author
  • Wenyuan Jin
    • 1
  • Jingfan Wang
    • 1
  • Yuyang Sun
    • 1
  1. 1.College of Food Engineering and Nutrition ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations