Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 3, pp 1155–1165 | Cite as

Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation

  • Miao Liu
  • Siqi Li
  • Yongzhen Xie
  • Shiru Jia
  • Ying Hou
  • Yang Zou
  • Cheng ZhongEmail author
Biotechnological products and process engineering

Abstract

Oxygen plays a key role during bacterial cellulose (BC) biosynthesis by Gluconacetobacter xylinus. In this study, the Vitreoscilla hemoglobin (VHb)-encoding gene vgb, which has been widely applied to improve cell survival during hypoxia, was heterologously expressed in G. xylinus via the pBla-VHb-122 plasmid. G. xylinus and G. xylinus-vgb + were statically cultured under hypoxic (10 and 15% oxygen tension in the gaseous phase), atmospheric (21%), and oxygen-enriched conditions (40 and 80%) to investigate the effect of oxygen on cell growth and BC production. Irrespective of vgb expression, we found that cell density increased with oxygen tension (10–80%) during the exponential growth phase but plateaued to the same value in the stationary phase. In contrast, BC production was found to significantly increase at lower oxygen tensions. In addition, we found that BC production at oxygen tensions of 10 and 15% was 26.5 and 58.6% higher, respectively, in G. xylinus-vgb + than that in G. xylinus. The maximum BC yield and glucose conversion rate, of 4.3 g/L and 184.7 mg/g, respectively, were observed in G. xylinus-vgb + at an oxygen tension of 15%. Finally, BC characterization suggested that hypoxic conditions enhance BC’s mass density, Young’s modulus, and thermostability, with G. xylinus-vgb + synthesizing softer BC than G. xylinus under hypoxia as a result of a decreased Young’s modulus. These results will facilitate the use of static culture for the production of BC.

Keywords

Bacterial cellulose Gluconacetobacter xylinus Oxygen tension Vitreoscilla hemoglobin Young’s modulus 

Notes

Acknowledgements

The authors would like to express their appreciation to Professor Lee Cheng-Kang from the National Taiwan University of Science and Technology for the generous gift of plasmid pBla-VHb-122.

Funding information

This work was funded by the National Natural Science Foundation of China (no. 21576212 and no. 31470610), the Natural Science Foundation of Tianjin (15JCZDJC32600), and the Innovation Foundation for Doctor Dissertation of Tianjin University of Science and Technology (2016001).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Bo R, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141–2149.  https://doi.org/10.1016/j.biomaterials.2005.10.026 CrossRefPubMedGoogle Scholar
  2. Cai Z, Kim J (2010) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17(1):83–91.  https://doi.org/10.1007/s10570-009-9362-5 CrossRefGoogle Scholar
  3. Chao Y, Sugano Y, Shoda M (2001) Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor. Appl Microbiol Biotechnol 55(6):673–679.  https://doi.org/10.1007/s002530000503 CrossRefPubMedGoogle Scholar
  4. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2):107–124Google Scholar
  5. Cheng KC, Catchmark JM, Demirci A (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12(3):730–736.  https://doi.org/10.1021/bm101363t CrossRefPubMedGoogle Scholar
  6. Chien LJ, Chen HT, Yang PF, Lee CK (2006) Enhancement of cellulose pellicle production by constitutively expressing Vitreoscilla hemoglobin in Acetobacter xylinum. Biotechnol Prog 22(6):1598–1603.  https://doi.org/10.1021/bp060157g CrossRefPubMedGoogle Scholar
  7. Choi YJ, Ahn Y, Kang MS, Jun HK, Kim IS, Moon SH (2010) Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane. J Chem Technol Biotechnol 79(1):79–84CrossRefGoogle Scholar
  8. Czaja W, Krystynowicz A, Bielecki S, Jr BR (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27(2):145–151.  https://doi.org/10.1016/j.biomaterials.2005.07.035 CrossRefPubMedGoogle Scholar
  9. Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3):403–411.  https://doi.org/10.1023/B:CELL.0000046412.11983.61 CrossRefGoogle Scholar
  10. Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JK, Teeri TT, Jones TA (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265(5171):524–528.  https://doi.org/10.1126/science.8036495 CrossRefPubMedGoogle Scholar
  11. Dogan I, Pagilla KR, Webster DA, Stark BC (2006) Expression of Vitreoscilla hemoglobin in Gordonia amarae enhances biosurfactant production. J Ind Microbiol Biotechnol 33(8):693–700.  https://doi.org/10.1007/s10295-006-0097-0 CrossRefPubMedGoogle Scholar
  12. Evans BR, O'Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18(7):917–923.  https://doi.org/10.1016/S0956-5663(02)00212-9 CrossRefPubMedGoogle Scholar
  13. Fabra MJ, López-Rubio A, Ambrosio-Martín J, Lagaron JM (2016) Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocoll 61:261–268.  https://doi.org/10.1016/j.foodhyd.2016.05.025 CrossRefGoogle Scholar
  14. Fang L, Catchmark JM (2014) Characterization of water-soluble exopolysaccharides from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 21(6):3965–3978.  https://doi.org/10.1007/s10570-014-0443-8 CrossRefGoogle Scholar
  15. Feng Y, Zhang X, Shen Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym 87(1):644–649.  https://doi.org/10.1016/j.carbpol.2011.08.039 CrossRefGoogle Scholar
  16. Frey AD, Kallio PT (2003) Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiol Rev 27(4):525–545.  https://doi.org/10.1016/S0168-6445(03)00056-1 CrossRefPubMedGoogle Scholar
  17. Hart RA, Rinas U, Bailey JE (1990) Protein composition of Vitreoscilla hemoglobin inclusion bodies produced in Escherichia coli. J Biol Chem 265(21):12728–12733.  https://doi.org/10.1128/MMBR.00036-05 PubMedGoogle Scholar
  18. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585.  https://doi.org/10.1021/bm800038n CrossRefPubMedGoogle Scholar
  19. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hornung M, Ludwig M, Gerrard AM, Schmauder HP (2006) Optimizing the production of bacterial cellulose in surface culture: evaluation of product movement influences on the bioreaction (Part 1). Eng Life Sci 6(6):537–545.  https://doi.org/10.1002/elsc.200620162 CrossRefGoogle Scholar
  21. Imai T, Sun S, Horikawa Y, Wada M, Sugiyama J (2014) Functional reconstitution of cellulose synthase in Escherichia coli. Biomacromolecules 15(11):4206–4213.  https://doi.org/10.1021/bm501217g CrossRefPubMedGoogle Scholar
  22. Ji K, Wang W, Zeng B, Chen S, Zhao Q, Chen Y, Li G, Ma T (2016) Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07. Sci Rep-UK 6:21863.  https://doi.org/10.1038/srep21863 CrossRefGoogle Scholar
  23. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59(1–3):101–106.  https://doi.org/10.1016/S0141-3910(97)00197-3 CrossRefGoogle Scholar
  24. Kubiak K, Kurzawa M, Jędrzejczak-Krzepkowska M, Ludwicka K, Krawczyk M, Migdalski A, Kacprzak MM, Loska D, Krystynowicz A, Bielecki S (2014) Complete genome sequence of Gluconacetobacter xylinus E25 strain—valuable and effective producer of bacterial nanocellulose. J Biotechnol 176(1):18–19.  https://doi.org/10.1016/j.jbiotec.2014.02.006 CrossRefPubMedGoogle Scholar
  25. Li Y, Tian C, Tian H, Zhang J, He X, Ping W, Lei H (2012) Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Appl Microbiol Biotechnol 96(6):1479–1487.  https://doi.org/10.1007/s00253-012-4242-6 CrossRefPubMedGoogle Scholar
  26. Liu M, Zhong C, Wu XY, Wei YQ, Bo T, Han PP, Jia SR (2015) Metabolomic profiling coupled with metabolic network reveals differences in Gluconacetobacter xylinus from static and agitated cultures. Biochem Eng J 101:85–98.  https://doi.org/10.1016/j.bej.2015.05.002 CrossRefGoogle Scholar
  27. Liu Q, Zhang J, Wei XX, Ouyang SP, Wu Q, Chen GQ (2008) Microbial production of l -glutamate and l -glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb. Appl Microbiol Biotechnol 77(6):1297–1304.  https://doi.org/10.1007/s00253-007-1254-8 CrossRefPubMedGoogle Scholar
  28. Liu T, Chen JY, Zheng Z, Wang TH, Chen GQ (2005) Construction of highly efficient E. coli expression systems containing low oxygen induced promoter and partition region. Appl Microbiol Biotechnol 68(3):346–354.  https://doi.org/10.1007/s00253-005-1913-6 CrossRefPubMedGoogle Scholar
  29. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72(1):43–51.  https://doi.org/10.1016/j.carbpol.2007.07.025 CrossRefGoogle Scholar
  30. Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80(1):93–97.  https://doi.org/10.1007/s00339-004-2932-3 CrossRefGoogle Scholar
  31. Naritomi T, Kouda T, Yano H, Yoshinaga F (1998) Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85(6):598–603.  https://doi.org/10.1016/S0922-338X(98)80012-3 CrossRefGoogle Scholar
  32. Orii Y, Webster DA (1986) Photodissociation of oxygenated cytochrome o(s) (Vitreoscilla) and kinetic studies of reassociation. J Biol Chem 261(8):3544–3547PubMedGoogle Scholar
  33. Park KW, Kim KJ, Howard AJ, Stark BC, Webster DA (2002) Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. J Biol Chem 277(36):33334–33337.  https://doi.org/10.1074/jbc.M203820200 CrossRefPubMedGoogle Scholar
  34. Ramandeep, Hwang KW, Raje M, Kim KJ, Stark BC, Dikshit KL, Webster DA (2001) Vitreoscilla hemoglobin. Intracellular localization and binding to membranes. J Biol Chem 276(27):24781–24789.  https://doi.org/10.1074/jbc.M009808200 CrossRefPubMedGoogle Scholar
  35. Ross P, Aloni Y, Weinhouse H, Michaeli D, Weinberger-Ohana P, Mayer R, Benziman M (1986) Control of cellulose synthesis Acetobacter xylinum. A unique guanyl oligonucleotide is the immediate activator of the cellulose synthase. Carbohydr Res 149(1):101–117.  https://doi.org/10.1016/S0008-6215(00)90372-0 CrossRefGoogle Scholar
  36. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55(1):35–58PubMedPubMedCentralGoogle Scholar
  37. Shah J, Brown RM Jr (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352–355.  https://doi.org/10.1007/s00253-004-1756-6 CrossRefPubMedGoogle Scholar
  38. Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98(2):1585–1598.  https://doi.org/10.1016/j.carbpol.2013.08.018 CrossRefPubMedGoogle Scholar
  39. Stark BC, Pagilla KR, Dikshit KL (2015) Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl Microbiol Biotechnol 99(4):1627–1636.  https://doi.org/10.1007/s00253-014-6350-y CrossRefPubMedGoogle Scholar
  40. Suen YL, Tang H, Huang J, Chen F (2014) Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin. J Agric Food Chem 62(51):12392–12398.  https://doi.org/10.1021/jf5048578 CrossRefPubMedGoogle Scholar
  41. Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26(1):125–131.  https://doi.org/10.1007/s11274-009-0151-y CrossRefGoogle Scholar
  42. Tsai PS, Hatzimanikatis V, Bailey JE (1996) Effect of Vitreoscilla hemoglobin dosage on microaerobic Escherichia coli carbon and energy metabolism. Biotechnol Bioeng 49(2):139–150.  https://doi.org/10.1002/(SICI)1097-0290(19960120)49:2<139::AID-BIT3>3.0.CO;2-R CrossRefPubMedGoogle Scholar
  43. Tsuge S, Nakayama T, Terashima S, Ochiai H, Furutani A, Oku T, Tsuno K, Kubo Y, Kaku H (2006) Gene involved in transcriptional activation of the hrp regulatory gene hrpG in Xanthomonas oryzae pv. oryzae. J Bacteriol 188(11):4158–4162.  https://doi.org/10.1128/JB.00006-06 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Valla S, Coucheron DH, Fjaervik E, Kjosbakken J, Weinhouse H, Ross P, Amikam D, Benziman M (1989) Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum: complementation of cellulose-negative mutants by the UDPG pyrophosphorylase structural gene. Mol Gen Genet 217(1):26–30.  https://doi.org/10.1007/bf00330938 CrossRefPubMedGoogle Scholar
  45. Watanabe K, Yamanaka S (1995) Effects of oxygen tension in the gaseous phase on production and physical properties of bacterial cellulose formed under static culture conditions. Biosci Biotechnol Biochem 59(1):65–68.  https://doi.org/10.1271/bbb.59.65 CrossRefGoogle Scholar
  46. Webster DA (1988) Structure and function of bacterial hemoglobin and related proteins. Adv Inorg Biochem 7:245–265PubMedGoogle Scholar
  47. Webster DA, Hackett DP (1966) The purification and properties of cytochrome o from Vitreoscilla. J Biol Chem 241(14):3308–3315PubMedGoogle Scholar
  48. Xiong X, Xing J, Li X, Bai X, Li W, Li Y, Liu H (2007) Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of Vitreoscilla hemoglobin. Appl Environ Microbiol 73(7):2394–2397.  https://doi.org/10.1128/AEM.02372-06 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yin N, Santos TM, Auer GK, Crooks JA, Oliver PM, Weibel DB (2014) Bacterial cellulose as a substrate for microbial cell culture. Appl Environ Microbiol 80(6):1926–1932.  https://doi.org/10.1128/AEM.03452-13 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zhang L, Li Y, Wang Z, Xia Y, Chen W, Tang K (2007) Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol Adv 25(2):123–136.  https://doi.org/10.1016/j.biotechadv.2006.11.001 CrossRefPubMedGoogle Scholar
  51. Zhong C, Zhang GC, Liu M, Zheng XT, Han PP, Jia SR (2013) Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl Microbiol Biotechnol 97(14):6189–6199.  https://doi.org/10.1007/s00253-013-4908-8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Miao Liu
    • 1
  • Siqi Li
    • 1
  • Yongzhen Xie
    • 1
  • Shiru Jia
    • 1
  • Ying Hou
    • 1
  • Yang Zou
    • 2
  • Cheng Zhong
    • 1
    Email author
  1. 1.Key Laboratory of Industrial Fermentation Microbiology, Ministry of EducationTianjin University of Science and TechnologyTianjinPeople’s Republic of China
  2. 2.Tianjin Jialihe Livestock Group Co., LtdTianjinPeople’s Republic of China

Personalised recommendations