Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 23–24, pp 8517–8531 | Cite as

Genomic analyses reveal low mitochondrial and high nuclear diversity in the cyclosporin-producing fungus Tolypocladium inflatum

  • Yong-Jie ZhangEmail author
  • Xiao-Qing Yang
  • Shu Zhang
  • Richard A. Humber
  • Jianping XuEmail author
Genomics, transcriptomics, proteomics

Abstract

Mitochondrial DNA is generally regarded to evolve faster than nuclear DNA in animals, whereas if this is also true in fungi remains unclear. Herein, we annotate the first complete mitochondrial genome (mitogenome) of the cyclosporin-producing fungus Tolypocladium inflatum and report the genome-wide sequence variations among five isolates originating from distantly separated localities. We found that T. inflatum has among the most compact of fungal mitogenomes; its 25 kb DNA molecule encodes all standard fungal mitochondrial genes and harbors only one intron. Transcriptional analyses validated the expression of most conserved genes. We found several uncommon repetitive elements and evidence of gene transfer from the mitochondrion to the nucleus. Phylogenetic analyses confirmed the placement of T. inflatum in the fungal order Hypocreales although there was uncertainty on its family-level affiliation. Comparative genomic analyses among the five isolates identified an overall lower level of intraspecific variation in mitogenomes than in nuclear genomes; however, both the nuclear and mitochondrial genomes revealed similar isolate relationships, not correlating with geographic sources of these isolates. Our study shed new insights into the evolution of the medicinally important ascomycete T. inflatum.

Keywords

Tolypocladium inflatum Mitochondrial genome Transcriptome Comparative genomics Phylogeny Evolution 

Notes

Acknowledgements

The authors thank USDA-ARS Collection of Entomopathogenic Fungal Cultures for providing T. inflatum isolates.

Funding information

This study was funded by the National Natural Science Foundation of China (81102759), the Natural Science Foundation of Shanxi Province (2014021030-2, 201601D011065), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, and the Research Project Supported by Shanxi Scholarship Council of China (2017-015).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2017_8574_MOESM1_ESM.pdf (399 kb)
ESM 1 (PDF 398 kb)

References

  1. Abyzov A, Urban AE, Snyder M, Gerstein M (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 21:974–984CrossRefPubMedPubMedCentralGoogle Scholar
  2. Balakrishnan K, Pandey A (1996) The panorama of cyclosporin research. J Basic Microb 36:121CrossRefGoogle Scholar
  3. Bartelli TF, Ferreira RC, Colombo AL, Briones MRS (2013) Intraspecific comparative genomics of Candida albicans mitochondria reveals non-coding regions under neutral evolution. Infect Genet Evol 14:302–312CrossRefPubMedGoogle Scholar
  4. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bissett J (1983) Notes on Tolypocladium and related genera. Can J Bot 61:1311–1329CrossRefGoogle Scholar
  6. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotech 18:630–634CrossRefGoogle Scholar
  7. Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A 76:1967–1971CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burger TD, Shao R, Labruna MB, Barker SC (2014) Molecular phylogeny of soft ticks (Ixodida: Argasidae) inferred from mitochondrial genome and nuclear rRNA sequences. Ticks Tick-borne Dis 5:195–207CrossRefPubMedGoogle Scholar
  9. Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M, Boyd AE, Owensby CA, Knaus BJ, Elser J, Miller D, Di Y, McPhail KL, Spatafora JW (2013) The genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Genet 9:e1003496CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252CrossRefPubMedGoogle Scholar
  11. Chen XJ, Butow RA (2005) The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6:815–825CrossRefPubMedGoogle Scholar
  12. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q, Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, Mardis ER (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6:677–681CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cummings DJ, McNally KL, Domenico JM, Matsuura ET (1990) The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 17:375–402CrossRefPubMedGoogle Scholar
  14. Dai YC, Cui BK, Si J, He SH, Hyde KD, Yuan HS, Liu XY, Zhou LW (2015) Dynamics of the worldwide number of fungi with emphasis on fungal diversity in China. Mycol Prog 14(8):62CrossRefGoogle Scholar
  15. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230CrossRefPubMedGoogle Scholar
  16. Formey D, Moles M, Haouy A, Savelli B, Bouchez O, Becard G, Roux C (2012) Comparative analysis of mitochondrial genomes of Rhizophagus irregularis—syn. Glomus irregulare—reveals a polymorphism induced by variability generating elements. New Phytol 196:1217–1227CrossRefPubMedGoogle Scholar
  17. Freel KC, Friedrich A, Hou J, Schacherer J (2014) Population genomic analysis reveals highly conserved mitochondrial genomes in the yeast species Lachancea thermotolerans. Genome Biol Evol 6:2586–2594CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fucikova K, Lahr DJ (2016) Uncovering cryptic diversity in two amoebozoan species using complete mitochondrial genome sequences. J Eukaryot Microbiol 63:112–122CrossRefPubMedGoogle Scholar
  19. Gams W (1971) Tolypocladium, eine Hyphomycetengattung mit geschwollenen Phialiden. Persoonia 6:185–191Google Scholar
  20. Ghikas D, Kouvelis V, Typas M (2006) The complete mitochondrial genome of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae: gene order and trn gene clusters reveal a common evolutionary course for all Sordariomycetes, while intergenic regions show variation. Arch Microbiol 185:393–401CrossRefPubMedGoogle Scholar
  21. Ghikas D, Kouvelis V, Typas M (2010) Phylogenetic and biogeographic implications inferred by mitochondrial intergenic region analyses and ITS1-5.8S-ITS2 of the entomopathogenic fungi Beauveria bassiana and B. brongniartii. BMC Microbiol 10:174CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gräfe U, Ihn W, Schlegel B, Höfle G, Augustiniak H, Sandor P (1991) Structure of ergokonin C, a new carboxysterol antifungal antibiotic from a Tolypocladium inflatum mutant. Pharmazie 46:613–614PubMedGoogle Scholar
  23. Gupta S, Krasnoff SB, Roberts DW, Renwick JAA, Brinen LS, Clardy J (1992) Structure of efrapeptins from the fungus Tolypocladium niveum: peptide inhibitors of mitochondrial ATPase. J Org Chem 57:2306–2313CrossRefGoogle Scholar
  24. Hawksworth D (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. MycoKeys 1:7–20CrossRefGoogle Scholar
  25. Hodge KT, Krasnoff SB, Humber RA (1996) Tolypocladium inflatum is the anamorph of Cordyceps subsessilis. Mycologia 88:715–719CrossRefGoogle Scholar
  26. Huang H, Manton KG (2004) The role of oxidative damage in mitochondria during aging: a review. Front Biosci 9:1100–1117CrossRefPubMedGoogle Scholar
  27. Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682CrossRefPubMedPubMedCentralGoogle Scholar
  28. Huang F, Li Y, Chen X (2017) The complete mitochondrial genome of a medicinal fungus, Tolypocladium ophioglossoides. Mitochondr DNA Part B 2:95–96CrossRefGoogle Scholar
  29. Jung PP, Friedrich A, Reisser C, Hou J, Schacherer J (2012) Mitochondrial genome evolution in a single protoploid yeast species. G3-Genes Genom. G E N 2:1103–1111Google Scholar
  30. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kouvelis VN, Ghikas DV, Typas MA (2004) The analysis of the complete mitochondrial genome of Lecanicillium muscarium (synonym Verticillium lecanii) suggests a minimum common gene organization in mtDNAs of Sordariomycetes: phylogenetic implications. Fungal Genet Biol 41:930–940CrossRefPubMedGoogle Scholar
  32. Kurtz S, Schleiermacher C (1999) REPuter: fast computation of maximal repeats in complete genomes. Bioinformatics 15:426–427CrossRefPubMedGoogle Scholar
  33. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773Google Scholar
  34. Laslett D, Canbäck B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16CrossRefPubMedPubMedCentralGoogle Scholar
  35. Laslett D, Canbäck B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24:172–175CrossRefPubMedGoogle Scholar
  36. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lin J, Chen XY, Cai XY, Yu XF, Liu XZ, Cao Y, Che YS (2011) Isolation and characterization of aphidicolin and chlamydosporol derivatives from Tolypocladium inflatum. J Nat Prod 74:1798–1804CrossRefPubMedGoogle Scholar
  38. Lin RM, Liu CC, Shen BM, Bai M, Ling J, Chen GH, Mao ZC, Cheng XY, Xie BY (2015) Analysis of the complete mitochondrial genome of Pochonia chlamydosporia suggests a close relationship to the invertebrate-pathogenic fungi in Hypocreales. BMC Microbiol 15:15CrossRefGoogle Scholar
  39. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:0955–0964CrossRefGoogle Scholar
  40. Lynch M, Koskella B, Schaack S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311:1727CrossRefPubMedGoogle Scholar
  41. Lynch M, Sung W, Morris K, Coffey N, Landry CR, Dopman EB, Dickinson WJ, Okamoto K, Kulkarni S, Hartl DL (2008) A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci USA 105:9272CrossRefPubMedPubMedCentralGoogle Scholar
  42. McCluskey K (2012) Variation in mitochondrial genome primary sequence among whole-genome-sequenced strains of Neurospora crassa. IMA Fungus 3:93–98CrossRefPubMedPubMedCentralGoogle Scholar
  43. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nadimi M, Daubois L, Hijri M (2016) Mitochondrial comparative genomics and phylogenetic signal assessment of mtDNA among arbuscular mycorrhizal fungi. Mol Phylogenet Evol 98:74–83CrossRefPubMedGoogle Scholar
  45. Oh J, Kong WS, Sung GH (2014) Complete mitochondrial genome of the entomopathogenic fungus Beauveria pseudobassiana (Ascomycota, Cordycipitaceae). Mitochondr DNA 26:777–778Google Scholar
  46. Quandt CA, Kepler RM, Gams W, Araujo JP, Ban S, Evans HC, Hughes D, Humber R, Hywel-Jones N, Li Z, Luangsa-Ard JJ, Rehner SA, Sanjuan T, Sato H, Shrestha B, Sung GH, Yao YJ, Zare R, Spatafora JW (2014) Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. IMA Fungus 5:121–134CrossRefPubMedPubMedCentralGoogle Scholar
  47. Quinlan AR (2014) BEDTools: the Swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics 47:11.12.1–11.12.34CrossRefGoogle Scholar
  48. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  49. Stamatakis A (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefPubMedPubMedCentralGoogle Scholar
  50. Summerbell RC, Gueidan C, Schroers H-J, de Hoog GS, Starink M, Rosete YA, Guarro J, Scott JA (2011) Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Stud Mycol 68:139–162CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sung GH (2015) Complete mitochondrial DNA genome of the medicinal mushroom Cordyceps militaris (Ascomycota, Cordycipitaceae). Mitochondr DNA 26:789–790CrossRefGoogle Scholar
  52. Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59CrossRefPubMedPubMedCentralGoogle Scholar
  53. Survase SA, Kagliwal LD, Annapure US, Singhal RS (2011) Cyclosporin A—a review on fermentative production, downstream processing and pharmacological applications. Biotechnol Adv 29:418–435CrossRefPubMedGoogle Scholar
  54. Svarstad H, Bugge HC, Dhillion SS (2000) From Norway to Novartis: cyclosporin from Tolypocladium inflatum in an open access bioprospecting regime. Biodivers Conserv 9:1521–1541CrossRefGoogle Scholar
  55. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  56. Torriani SFF, Goodwin SB, Kema GHJ, Pangilinan JL, McDonald BA (2008) Intraspecific comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola. Fungal Genet Biol 45:628–637CrossRefPubMedGoogle Scholar
  57. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wang L, Xu J, Li H, Song L, Yu Y, Zhang W, Liu G, Feng C (2016) The complete mitochondrial genome of Paecilomyces hepiali (Ascomycota, Eurotiomycetes). Mitochondr DNA Part A 27:916–917CrossRefGoogle Scholar
  59. Weiser J, Matha V (1988) Tolypin, a new insecticidal metabolite of fungi of the genus Tolypocladium. J Invertebr Pathol 51:94–96CrossRefPubMedGoogle Scholar
  60. Xin B, Lin R, Shen B, Mao Z, Cheng X, Xie B (2017) The complete mitochondrial genome of the nematophagous fungus Lecanicillium saksenae. Mitochondr DNA 28:52–53CrossRefGoogle Scholar
  61. Yang H, Wang K (2015) Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10:1556–1566CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zhan J, Pettway RE, McDonald BA (2003) The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genet Biol 38:286–297CrossRefPubMedGoogle Scholar
  64. Zhang YJ, Zhang S, Liu XZ, Wen HA, Wang M (2010) A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Lett Appl Microbiol 51:114–118PubMedGoogle Scholar
  65. Zhang YJ, Zhang S, Zhang GZ, Liu XZ, Wang CS, Xu JP (2015) Comparison of mitochondrial genomes provides insights into intron dynamics and evolution in the caterpillar fungus Cordyceps militaris. Fungal Genet Biol 77:95–107CrossRefPubMedGoogle Scholar
  66. Zhang S, Hao AJ, Zhao YX, Zhang XY, Zhang YJ (2017a) Comparative mitochondrial genomics toward exploring molecular markers in the medicinal fungus Cordyceps militaris. Sci Rep 7:40219CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhang YJ, Zhang HY, Liu XZ, Zhang S (2017b) Mitochondrial genome of the nematode endoparasitic fungus Hirsutella vermicola reveals a high level of synteny in the family Ophiocordycipitaceae. Appl Microbiol Biotechnol 101:3295–3304CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Life SciencesShanxi UniversityTaiyuanChina
  2. 2.Institute of BiotechnologyShanxi UniversityTaiyuanChina
  3. 3.Institute of Applied ChemistryShanxi UniversityTaiyuanChina
  4. 4.USDA, ARS Emerging Pests and Pathogens Research UnitRobert W. Holley Center for Agriculture and HealthIthacaUSA
  5. 5.Department of BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations