Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 23–24, pp 8309–8319 | Cite as

Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine

  • Jianwei Chen
  • Qihao Wu
  • Yi Hua
  • Jun Chen
  • Huawei Zhang
  • Hong WangEmail author
Mini-Review

Abstract

Rhamnolipids have recently emerged as promising bioactive molecules due to their novel structures, diverse and versatile biological functions, lower toxicity, higher biodegradability, as well as production from renewable resources. The advantages of rhamnolipids make them attractive targets for research in a wide variety of applications. Especially rhamnolipids are likely to possess potential applications of the future in areas such as biomedicine, therapeutics, and agriculture. The purpose of this mini review is to provide a comprehensive prospective of biosurfactant rhamnolipids as potential antimicrobials, immune modulators, and virulence factors, and anticancer agents in the field of biomedicine and agriculture that may meet the ever-increasing future pharmacological treatment and food safety needs in human health.

Keywords

Rhamnolipids Application Agriculture and biomedicine 

Notes

Acknowledgments

The authors thank Michael J. Murphy, Ph.D., for his suggestions in this manuscript.

Funding information

This project was supported by National Natural Science Foundation of China (No. 81773628 and No. 41776139), National Natural Science Foundation of China (Key Program) (No. 21337005), and Zhejiang Provincial Natural Science Foundation (No. LY16H300008 and No. LY16H300007).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abalos A, Pinazoa A, Infante MR, Casals M, García F, Manresa A (2017) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17(5):1367–1371.  https://doi.org/10.1021/la0011735. CrossRefGoogle Scholar
  2. Abbasi H, Noghabi KA, Hamedi MM, Zahiri HS, Moosavi-Movahedi AA, Amanlou M, Teruel JA, Ortiz A (2013) Physicochemical characterization of a monorhamnolipid secreted by Pseudomonas aeruginosa MA01 in aqueous media. An experimental and molecular dynamics study. Colloids Surf B Biointerfaces 101(1):256–265.  https://doi.org/10.1016/j.colsurfb.2012.06.035. CrossRefPubMedGoogle Scholar
  3. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86(5):1323–1336.  https://doi.org/10.1007/s00253-010-2498-2 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Abdelmawgoud AM, Lépine F, Déziel E (2014) A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol 21(1):156–164.  https://doi.org/10.1016/j.chembiol.2013.11.010 CrossRefGoogle Scholar
  5. Allada LTK, Guntuku GS, Muthyala MKK, Duddu MK, Golla NS (2015) Characterization of bioactive compound from Streptomyces coelicoflavus NBRC (15399T) and its anticancer activity. Int J Chem Pharm Anal 2(4):1–13Google Scholar
  6. Andrä J, Rademann J, Howe J, Koch MH, Heine H, Zähringer U, Brandenburg K (2006) Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization. Biol Chem 300(3):301–310.  https://doi.org/10.1515/BC.2006.040 Google Scholar
  7. Batovska DI, Todorova IT, Tsvetkova IV, Najdenski HM (2009) Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships. Pol J Microbiol 58(1):43–47PubMedGoogle Scholar
  8. Bauer J, Brandenburg K, Zähringer U, Rademann J (2006) Chemical synthesis of a glycolipid library by a solid-phase strategy allows elucidation of the structural specificity of immunostimulation by rhamnolipids. Chem Eur J 12(27):7116–7124.  https://doi.org/10.1002/chem.200600482 CrossRefPubMedGoogle Scholar
  9. Bazire A, Dufour A (2014) The Pseudomonas aeruginosa rhlG and rhlAB genes are inversely regulated and Rhl G is not required for rhamnolipid synthesis. BMC Microbiol 14(1):1–9.  https://doi.org/10.1186/1471-2180-14-160 CrossRefGoogle Scholar
  10. Behrens B, Baune M, Jungkeit J, Tiso T, Blank LM, Hayen H (2016a) High performance liquid chromatography-charged aerosol detection applying an inverse gradient for quantification of rhamnolipid biosurfactants. J Chromatogr A 1455:125–132.  https://doi.org/10.1016/j.chroma.2016.05.079 CrossRefPubMedGoogle Scholar
  11. Behrens B, Helmer PO, Tiso T, Blank LM, Hayen H (2016c) Rhamnolipid biosurfactantanalysis using online turbulent flow chromatography-liquid chromatography-tandem mass spectrometry. J Chromatogr A 1465:90–97.  https://doi.org/10.1016/j.chroma.2016.08.044 CrossRefPubMedGoogle Scholar
  12. Behrens B, Engelen J, Tiso T, Blank LM, Hayen H (2016b) Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction. Anal Bioanal Chem 408(10):2505–2514.  https://doi.org/10.1007/s00216-016-9353-y CrossRefPubMedGoogle Scholar
  13. Bianconi I, Milani A, Cigana C, Paroni M, Levesque RC, Bertoni G, Bragonzi A (2011) Positive signature-tagged mutagenesis in Pseudomonas aeruginosa: tracking patho-adaptive mutations promoting airways chronic infection. PLoS Pathog 7(2):e1001270.  https://doi.org/10.1371/journal.ppat.1001270 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bjarnsholt T, Jensen PØ, Jakobsen TH, Phipps R, Nielsen AK, Rybtke MT, Tolker-Nielsen T, Givskov M, Høiby N, Ciofu O (2010) Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS One 5(4):e10115.  https://doi.org/10.1371/journal.pone.0010115 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen JW, Sun JW, Deering RW, DaSilva N, Seeram NP, Wang H, Rowley DC (2016) Rhizoleucinoside, a Rhamnolipid–Amino Alcohol Hybrid from the Rhizobial Symbiont Bradyrhizobium sp. BTAi1. Org Lett 18(6):1490–1493.  https://doi.org/10.1021/acs.orglett.6b00461 CrossRefPubMedGoogle Scholar
  16. Costa SG, Nitschke M, Lepine F, Deziel E, Contiero J (2010) Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava wastewater. Process Biochem 45(9):1511–1516.  https://doi.org/10.1016/j.procbio.2010.05.033 CrossRefGoogle Scholar
  17. Christova N, Tuleva B, Kril A, Georgieva M, Konstantinov S, Terziyski I, Nikolova B, Stoineva I (2013) Chemical structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Appl Biochem Biotechnol 170(3):676–689.  https://doi.org/10.1007/s12010-013-0225-z CrossRefPubMedGoogle Scholar
  18. de Rienzo MAD, Stevenson P, Marchant R, Banat IM (2016) Antibacterial properties of biosurfactants against selected gram-positive and -negative bacteria. FEMS Microbiol Lett 363(2):fnv224.  https://doi.org/10.1093/femsle/fnv224 CrossRefGoogle Scholar
  19. de SantanaFilho AP, Camiliosneto D, de Souza LM, Sassaki GL, Mitchell DA, Krieger N (2015) Evaluation of the structural composition and surface properties of rhamnolipid mixtures produced by Pseudomonas aeruginosa UFPEDA 614 in different cultivation periods. Appl Biochem Biotechnol 175(2):988–995.  https://doi.org/10.1007/s12010-014-1343-y CrossRefGoogle Scholar
  20. Dobler L, Vilela LF, Almeida RV, Neves BC (2015) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol 33(1):123–135.  https://doi.org/10.1016/j.nbt.2015.09.005 CrossRefGoogle Scholar
  21. Döessel J, Meyer-Hoffert U, Schröder JM, Gerstel U (2012) Pseudomonas aeruginosa-derived rhamnolipids subvert the host innate immune response through manipulation of the human beta-defensin-2 expression. Cellular Microbial 14(9):1364–1375.  https://doi.org/10.1111/j.1462-5822.2012.01801.x CrossRefGoogle Scholar
  22. Dwivedi S, Saquib Q, Al-Khedhairy AA, Ahmad J, Siddiqui MA, Musarrat J (2015) Rhamnolipids functionalized AgNPs-induced oxidative stress and modulation of toxicity pathway genes in cultured MCF-7 cells. Colloids Surf B Biointerfaces 132:290–298CrossRefPubMedGoogle Scholar
  23. Edwards JR, Hayashi JA (1965) Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys 111(2):415–421.  https://doi.org/10.1016/0003-9861(65)90204-3 CrossRefPubMedGoogle Scholar
  24. Elshikh M, Funston S, Chebbi A, Ahmed S, Marchant R, Banat IM (2017) Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. New Biotechnol 36:26–36.  https://doi.org/10.1016/j.nbt.2016.12.009 CrossRefGoogle Scholar
  25. Gerstel U, Czapp M, Bartels J, Schröder JM (2009) Rhamnolipid-induced shedding of flagellin from Pseudomonas aeruginosa provokes hBD-2 and IL-8 response in human keratinocytes. Cell Microbiol 11(5):842–853.  https://doi.org/10.1111/j.1462-5822.2009.01299.x CrossRefPubMedGoogle Scholar
  26. Goswami D, Borah SN, Lahkar J, Handique PJ, Deka S (2015) Antifungal properties of rhamnolipid produced by Pseudomonas aeruginosa DS9 against Colletotrichum falcatum. J Basic Microbiol 55(11):1265–1274.  https://doi.org/10.1002/jobm.201500220 CrossRefPubMedGoogle Scholar
  27. Haba E, Pinazo A, Jauregui O, Espuny M, Infante MR, Manresa A (2003) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng 81(3):316–322.  https://doi.org/10.1002/bit.10474 CrossRefPubMedGoogle Scholar
  28. Hajfarajollah H, Mehvari S, Habibian M, Mokhtarani B, Noghabi KA (2015) Rhamnolipid biosurfactant adsorption on a plasma-treated polypropylene surface to induce antimicrobial and antiadhesive properties. RSC Adv 5(42):33089–33097.  https://doi.org/10.1039/C5RA01233C CrossRefGoogle Scholar
  29. Hošková M, Ježdík R, Schreiberová O, Chudoba J, Šir M, Čejkov á A, Masák J, Jirků V, Řezanka T (2015) Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J Biotechnol 193:45–51.  https://doi.org/10.1016/j.jbiotec.2014.11.014 CrossRefPubMedGoogle Scholar
  30. Howe J, Bauer J, Andrä J, Schromm AB, Ernst M, Rössle M, Zähringer U, Rademann J, Brandenburg K (2006) Biophysical characterization of synthetic rhamnolipids. FEBS J 273(22):5101–5112.  https://doi.org/10.1111/j.1742-4658.2006.05507.x CrossRefPubMedGoogle Scholar
  31. Irfan-Maqsood M, Seddiq-Shams M (2014) Rhamnolipids: well-characterized glycolipids with potential broad applicability as biosurfactants. Ind Biotechnol 10(4):285–291.  https://doi.org/10.1089/ind.2014.0003 CrossRefGoogle Scholar
  32. Irorere VU, Tripathi L, Marchant R, Mcclean S, Banat IM (2017) Microbial rhamnolipid production: a critical re-evaluation of published data and suggested future publication criteria. Appl Microbiol Biot 101(10):3941–3951.  https://doi.org/10.1007/s00253-017-8262-0 CrossRefGoogle Scholar
  33. Itoh S, Honda H, Tomita F, Suzuki T (1971) Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C 12, C 13 and C 14 fractions). J Antibiot 24(12):855–859CrossRefGoogle Scholar
  34. Jayanthi C, Revathi K (2016) Immunostimulation by rhamnolipid biosurfactant fromPseudomonas putida in Labeo rohita. Int J Res Biol Sci 3:179–183Google Scholar
  35. Jiang L, Shen C, Long X, Zhang G, Meng Q (2014b) Rhamnolipids elicit the same cytotoxic sensitivity between cancer cell and normal cell by reducing surface tension of culture medium. Appl Microbiol Biotechnol 98(24):10187–10196.  https://doi.org/10.1007/s00253-014-6065-0 CrossRefPubMedGoogle Scholar
  36. Jiang L, Shen C, Long X, Meng Q (2014a) Mechanistic studies of differential cytotoxicities of rhamnolipids between in vitro and in vivo. Abstr 14AlChE Annual Meeting, abstr 599atGoogle Scholar
  37. Kamal A, Shaik AB, Kumar CG, Mongolla P, Rani PU, Krishna KV, Mamidyala SK, Joseph J (2012) Metabolic profiling and biological activities of bioactive compounds produced by Pseudomonas sp. strain ICTB-745 isolated from Ladakh, India. J Microbiol Biotechnol 22(1):69–79.  https://doi.org/10.4014/jmb.1105.05008 CrossRefPubMedGoogle Scholar
  38. Köhler T, Guanella R, Carlet J, Delden CV (2010) Quorum sensing-dependent virulence during Pseudomonas aeruginosa colonisation and pneumonia in mechanically ventilated patients. Thorax 65(8):703–710.  https://doi.org/10.1136/thx.2009.133082 CrossRefPubMedGoogle Scholar
  39. Lazarkevich I, Sotirova A, Avramova T, Galabova D (2015) Comparative study on antibacterial activity of synthetic analogues of biologically active compounds and their combination with rhamnolipid-biosurfactant. J Biosci Biotechnol SE/ONLINE:55–62Google Scholar
  40. Liu JF, Wu G, Yang SZ, BZ M (2014) Structural characterization of rhamnolipid produced by Pseudonomas aeruginosa strain FIN2 isolated from oil reservoir water. World J Microbiol Biotechnol 30(5):1473–1484.  https://doi.org/10.1007/s11274-013-1565-0 CrossRefPubMedGoogle Scholar
  41. Lovaglio RB, Silva VL, Ferreira H, Hausmann R, Contiero J (2015) Rhamnolipids know-how: looking for strategies for its industrial dissemination. Biotechnol Adv 33(8):1715–1726.  https://doi.org/10.1016/j.biotechadv.2015.09.002 CrossRefPubMedGoogle Scholar
  42. Magalhães L, Nitschke M (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 29(1):138–142.  https://doi.org/10.1016/j.foodcont.2012.06.009 CrossRefGoogle Scholar
  43. Meyer-Hoffert U, Zimmermann A, Czapp M, Bartels J, Koblyakova Y, Gläser R, Schröder JM, Gerstel U (2011) Flagellin delivery by Pseudomonas aeruginosa rhamnolipids induces the antimicrobial protein psoriasin in human skin. PLoS One 6(1):e16433.  https://doi.org/10.1371/journal.pone.0016433 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Miao S, Dashtbozorg SS, Callow NV, LK J (2015) Rhamnolipids as platform molecules for production of potential anti-zoospore agrochemicals. J Agri Food Chem 63(13):3367–3376.  https://doi.org/10.1021/acs.jafc.5b00033 CrossRefGoogle Scholar
  45. Müller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91(2):251–264.  https://doi.org/10.1007/s00253-011-3368-2 CrossRefPubMedGoogle Scholar
  46. Nalini S, Parthasarathi R (2014) Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application biocontrol agent. Bioresour Technol 173:231–238.  https://doi.org/10.1016/j.biortech.2014.09.051 CrossRefPubMedGoogle Scholar
  47. Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28(5):635–643.  https://doi.org/10.1016/j.biotechadv.2010.05.013 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Nott K, Richard G, Laurent P, Jérôme C, Blecker C, Wathelet JP, Paquot M, Deleu M (2013) Enzymatic synthesis and surface properties of novel rhamnolipids. Process Biochem 48(1):133–143.  https://doi.org/10.1016/j.procbio.2012.11.019 CrossRefGoogle Scholar
  49. Nitschke M, Costa SG, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21(6):1593–1600.  https://doi.org/10.1021/bp050239p CrossRefPubMedGoogle Scholar
  50. Ohlendorf B, Lorenzen W, Kehraus S, Krick A, Bode HB, König GM (2009) Myxotyrosides A and B, unusual rhamnosides from Myxococcus sp. J Nat Prod 72(1):82–86.  https://doi.org/10.1021/np8005875 CrossRefPubMedGoogle Scholar
  51. Pantazaki A, Choli-Papadopoulou T (2012) On the Thermus thermophilus HB8 potential pathogenicity triggered from rhamnolipids secretion: morphological alterations and cytotoxicity induced on fibroblastic cell line. Amino Acids 42(5):1913–1926.  https://doi.org/10.1007/s00726-011-0917-z CrossRefPubMedGoogle Scholar
  52. Piljac A, Stipcević T, Piljac-Zegarac J, Piljac G (2008) Successful treatment of chronic decubitus ulcer with 0.1% dirhamnolipid ointment. J Cutan Med Surg 12(3):142–146.  https://doi.org/10.2310/7750.2008.07052 CrossRefPubMedGoogle Scholar
  53. Piljac G, Piljac V. November 1995. Immunological activity of rhamnolipids. US patent 5466675.Google Scholar
  54. Reis RS, Pereira AG, Neves BC, Freire DM (2011) Gene regulation of rhamnolipid production in Pseudomonas aeruginosa—a review. Bioresour Technol 102(11): 6377–6384. doi :  https://doi.org/10.1016/j.biortech.2011.03.074.
  55. Rezanka T, Siristova L, Sigler K (2011) Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles 15(6):697–709.  https://doi.org/10.1007/s00792-011-0400-5 CrossRefPubMedGoogle Scholar
  56. Sanchez L, Courteaux B, Hubert J, Kauffmann S, Renault JH, Clément C, Baillieul F, Dorey S (2012) Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol 160(3):1630–1641.  https://doi.org/10.1104/pp.112.201913 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Schaffer S, Wessel M, Thiessenhusen A, Apirl SN (2015) Cells and methods for producing rhamnolipids. US patent 20130130319Google Scholar
  58. Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68(6):718–725.  https://doi.org/10.1007/s00253-005-0150-3 CrossRefPubMedGoogle Scholar
  59. Sotirova A, Avramova T, Stoitsova S, Lazarkevich I, Lubenets V, Karpenko E, Galabova D (2012) The importance of rhamnolipid-biosurfactant-induced changes in bacterial membrane lipids of Bacillus subtilis for the antimicrobial activity of thiosulfonates. Curr Microbiol 65(5):534–541.  https://doi.org/10.1007/s00284-012-0191-7 CrossRefPubMedGoogle Scholar
  60. Soltani Dashtbozorg S, Miao S, LK J (2016) Rhamnolipids as environmentally friendly biopesticide against plant pathogen Phytophthora sojae. Environ Prog Sustain Energy 35(1):169–173.  https://doi.org/10.1002/ep.12187 CrossRefGoogle Scholar
  61. Sha R, Jiang L, Meng Q, Zhang G, Song Z (2012) Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. J Basic Microbiol 52(4):458–466.  https://doi.org/10.1128/JB.186.10.2936-2945.2004. CrossRefPubMedGoogle Scholar
  62. Tavares LF, Silva PM, Junqueira M, Mariano DC, Nogueira FC, Domont GB, Freire DM, Neves BC (2013) Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl Microbiol Biotechnol 97(5):1909–1921.  https://doi.org/10.1007/s00253-012-4454-9 CrossRefPubMedGoogle Scholar
  63. Thanomsub B, Pumeechockchai W, Limtrakul A, Arunrattiyakorn P, Petchleelaha W, Nitoda T, Kanzaki H (2006) Chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. Bioresour Technol 97(18):2457–2461.  https://doi.org/10.1016/j.biortech.2005.10.029 CrossRefPubMedGoogle Scholar
  64. Toribio J, Escalante AE, Soberón-Chávez G (2010) Rhamnolipids: Production in bacteria other thanPseudomonas aeruginosa. E J Lipid Sci Tech 112(10):1082-1087.  https://doi.org/10.1002/ejlt.200900256
  65. Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F, Sorokin A, Renault JH, Kauffmann S, Pugin A, Clement C, Baillieul F, Dorey S (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32(2):178–193.  https://doi.org/10.1111/j.1365-3040.2008.01911.x CrossRefPubMedGoogle Scholar
  66. Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S (2010) Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci 11(12):5095–5108.  https://doi.org/10.3390/ijms11125095 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yin XH, Nie MQ, Shen QR (December 2011) Rhamnolipid biosurfactant from Pseudomonas Aeruginosa strain NY3 and methods of use. US patent 20110306569Google Scholar
  68. Zeng YB, Wang H, Zuo WJ, Zheng B, Yang T, Dai HF, Mei WL (2012) A fatty acid glycoside from a marine-derived fungus isolated from mangrove plant scyphiphora hydrophyllacea. Mar Drugs 10(3):598–603.  https://doi.org/10.3390/md10030598 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhu K, Rock CO (2008) RhlA converts β-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the β-hydroxydecanoyl-β-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190(9):3147–3154.  https://doi.org/10.1128/JB.00080-08 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhao J, Wu Y, Alfred AT, Xin X, Yang S (2013) Chemical structures and biological activities of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa M14808. J Chem Pharm Res 5(12):177–182Google Scholar
  71. Zulianello L, Canard C, Köhler T, Caille D, Lacroix JS, Meda P (2006) Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 74(6):3134–3147.  https://doi.org/10.1128/IAI.01772-05 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jianwei Chen
    • 1
  • Qihao Wu
    • 1
  • Yi Hua
    • 1
  • Jun Chen
    • 1
  • Huawei Zhang
    • 1
  • Hong Wang
    • 1
    • 2
    Email author
  1. 1.College of Pharmaceutical ScienceZhejiang University of TechnologyHangzhouChina
  2. 2.Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of TechnologyHangzhouChina

Personalised recommendations