Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 22, pp 8181–8195 | Cite as

Streptomyces tsukubaensis as a new model for carbon repression: transcriptomic response to tacrolimus repressing carbon sources

  • María Ordóñez-Robles
  • Fernando Santos-Beneit
  • Silvia M. Albillos
  • Paloma Liras
  • Juan F. Martín
  • Antonio Rodríguez-GarcíaEmail author
Genomics, transcriptomics, proteomics

Abstract

In this work, we identified glucose and glycerol as tacrolimus repressing carbon sources in the important species Streptomyces tsukubaensis. A genome-wide analysis of the transcriptomic response to glucose and glycerol additions was performed using microarray technology. The transcriptional time series obtained allowed us to compare the transcriptomic profiling of S. tsukubaensis growing under tacrolimus producing and non-producing conditions. The analysis revealed important and different metabolic changes after the additions and a lack of transcriptional activation of the fkb cluster. In addition, we detected important differences in the transcriptional response to glucose between S. tsukubaensis and the model species Streptomyces coelicolor. A number of genes encoding key players of morphological and biochemical differentiation were strongly and permanently downregulated by the carbon sources. Finally, we identified several genes showing transcriptional profiles highly correlated to that of the tacrolimus biosynthetic pathway regulator FkbN that might be potential candidates for the improvement of tacrolimus production.

Keywords

Streptomyces tsukubaensis Tacrolimus FK506 Carbon regulation Transcriptomics 

Notes

Acknowledgements

This work was supported by the European Union through an ERA-IB (PIM2010EEI-00677) international cooperation project. M. Ordóñez-Robles received a FPU fellowship of the Ministerio de Educación y Ciencia (Spain). We thank Dr. C. Prieto for sharing their prediction results of intrinsic terminators that were included in the microarray probe design. We acknowledge the technical support of B. Martín, J. Merino, A. Casenave and A. Mulero (INBIOTEC).

Funding

This study was funded by the Government of Spain (grant number PIM2010-EEI00677). María Ordóñez-Robles received a FPU grant from the Government of Spain (grant number AP2009-4508).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2017_8545_MOESM1_ESM.pdf (1.9 mb)
ESM 1 (PDF 1941 kb)

References

  1. Angell S, Schwarz E, Bibb MJ (1992) The glucose kinase gene of Streptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression. Mol Microbiol 6(19):2833–2844CrossRefPubMedGoogle Scholar
  2. Arabolaza A, D'Angelo M, Comba S, Gramajo H (2010) FasR, a novel class of transcriptional regulator, governs the activation of fatty acid biosynthesis genes in Streptomyces coelicolor. Mol Microbiol 78(1):47–63PubMedGoogle Scholar
  3. Ban YH, Park SR, Yoon YJ (2016) The biosynthetic pathway of FK506 and its engineering: from past achievements to future prospects. J Ind Microbiol Biotechnol 43(2–3):389–400CrossRefPubMedGoogle Scholar
  4. Barreiro C, Martínez-Castro M (2014) Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506). Appl Microbiol Biotechnol 98(2):497–507CrossRefPubMedGoogle Scholar
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57(1):289–300Google Scholar
  6. Blencke HM, Homuth G, Ludwig H, Mäder U, Hecker M, Stülke J (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng 5(2):133–149CrossRefPubMedGoogle Scholar
  7. Breuder T, Hemenway CS, Movva NR, Cardenas ME, Heitman J (1994) Calcineurin is essential in cyclosporin A- and FK506-sensitive yeast strains. Proc Natl Acad Sci U S A 91(12):5372–5376CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bucca G, Brassington AME, Hotchkiss G, Mersinias V, Smith CP (2003) Negative feedback regulation of dnaK, clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK-depletion analysis. Mol Microbiol 50(1):153–166CrossRefPubMedGoogle Scholar
  9. Bucca G, Laing E, Mersinias V, Allenby N, Hurd D, Holdstock J, Brenner V, Harrison M, Smith CP (2009) Development and application of versatile high density microarrays for genome-wide analysis of Streptomyces coelicolor: characterization of the HspR regulon. Genome Biol 10(1):R5CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen D, Zhang Q, Zhang Q, Cen P, Xu Z, Liu W (2012) Improvement of FK506 production in Streptomyces tsukubaensis by genetic enhancement of the supply of unusual polyketide extender units via utilization of two distinct site-specific recombination systems. Appl Environ Microbiol 78(15):5093–5103CrossRefPubMedPubMedCentralGoogle Scholar
  11. Conesa A, Nueda MJ, Ferrer A, Talón M (2006) maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22(9):1096–1102CrossRefPubMedGoogle Scholar
  12. Davis NK, Chater KF (1990) Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol Microbiol 4(10):1679–1691CrossRefPubMedGoogle Scholar
  13. De León P, Marco S, Isiegas C, Marina A, Carrascosa JL, Mellado RP (1997) Streptomyces lividans groES, groEL1 and groEL2 genes. Microbiology 143(Pt 11):3563–3571CrossRefPubMedGoogle Scholar
  14. De Mot R, Schoofs G, Nagy I (2007) Proteome analysis of Streptomyces coelicolor mutants affected in the proteasome system reveals changes in stress-responsive proteins. Arch Microbiol 188(3):257–271CrossRefPubMedGoogle Scholar
  15. Díaz M, Esteban A, Fernández-Abalos JM, Santamaría RI (2005) The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. Microbiology 151(Pt 8):2583–2592CrossRefPubMedGoogle Scholar
  16. Dominy JE Jr, Simmons CR, Karplus PA, Gehring AM, Stipanuk MH (2006) Identification and characterization of bacterial cysteine dioxygenases: a new route of cysteine degradation for eubacteria. J Bacteriol 188(15):5561–5569CrossRefPubMedPubMedCentralGoogle Scholar
  17. Du W, Huang D, Xia M, Wen J, Huang M (2014) Improved FK506 production by the precursors and product-tolerant mutant of Streptomyces tsukubaensis based on genome shuffling and dynamic fed-batch strategies. J Ind Microbiol Biotechnol 41(7):1131–1143CrossRefPubMedGoogle Scholar
  18. Dufour YS, Wesenberg GE, Tritt AJ, Glasner JD, Perna NT, Mitchell JC, Donohue TJ (2010) chipD: a web tool to design oligonucleotide probes for high-density tiling arrays. Nucleic Acids Res 38(Web Server issue):W321–W325CrossRefPubMedPubMedCentralGoogle Scholar
  19. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fink D, Weissschuh N, Reuther J, Wohlleben W, Engels A (2002) Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 46(2):331–347CrossRefPubMedGoogle Scholar
  21. Fischer M, Schmidt C, Falke D, Sawers RG (2012) Terminal reduction reactions of nitrate and sulfate assimilation in Streptomyces coelicolor A3(2): identification of genes encoding nitrite and sulfite reductases. Res Microbiol 163(5):340–348CrossRefPubMedGoogle Scholar
  22. Fowler-Goldsworthy K, Gust B, Mouz S, Chandra G, Findlay KC, Chater KF (2011) The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). Microbiology 157(Pt 5):1312–1328CrossRefPubMedGoogle Scholar
  23. Gao C, Hindra, Mulder D, Yin C, Elliot MA (2012) Crp is a global regulator of antibiotic production in Streptomyces. mBio 3(6):e00407-e00412Google Scholar
  24. González-Flecha B, Demple B (1995) Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem 270(23):13681–13687CrossRefPubMedGoogle Scholar
  25. Gubbens J, Janus M, Florea BI, Overkleeft HS, van Wezel GP (2012) Identification of glucose kinase-dependent and -independent pathways for carbon control of primary metabolism, development and antibiotic production in Streptomyces coelicolor by quantitative proteomics. Mol Microbiol 86(6):1490–1507CrossRefPubMedGoogle Scholar
  26. Gubbens J, Janus MM, Florea BI, Overkleeft HS, van Wezel GP (2017) Identification of glucose kinase-dependent and -independent pathways for carbon control of primary metabolism, development and antibiotic production in Streptomyces coelicolor by quantitative proteomicsGoogle Scholar
  27. Hahn JS, Oh SY, Roe JH (2002) Role of OxyR as a peroxide-sensing positive regulator in Streptomyces coelicolor A3(2). J Bacteriol 184(19):5214–5222CrossRefPubMedPubMedCentralGoogle Scholar
  28. Han L, Lobo S, Reynolds KA (1998) Characterization of β-ketoacyl-acyl carrier protein synthase III from Streptomyces glaucescens and its role in initiation of fatty acid biosynthesis. J Bacteriol 180(17):4481–4486PubMedPubMedCentralGoogle Scholar
  29. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381(6583):571–579CrossRefPubMedGoogle Scholar
  30. Hopwood DA (2007) Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, New YorkGoogle Scholar
  31. Hurtubise Y, Shareck F, Kluepfel D, Morosoli R (1995) A cellulase/xylanase-negative mutant of Streptomyces lividans 1326 defective in cellobiose and xylobiose uptake is mutated in a gene encoding a protein homologous to ATP-binding proteins. Mol Microbiol 17(2):367–377CrossRefPubMedGoogle Scholar
  32. Kallifidas D, Thomas D, Doughty P, Paget MSB (2010) The sigmaR regulon of Streptomyces coelicolor A3(2) reveals a key role in protein quality control during disulphide stress. Microbiology 156(Pt 6):1661–1672CrossRefPubMedGoogle Scholar
  33. Kang SH, Huang J, Lee HN, Hur YA, Cohen SN, Kim ES (2007) Interspecies DNA microarray analysis identifies WblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. J Bacteriol 189(11):4315–4319CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kawamoto S, Watanabe M, Saito N, Hesketh A, Vachalova K, Matsubara K, Ochi K (2001) Molecular and functional analyses of the gene (eshA) encoding the 52-kilodalton protein of Streptomyces coelicolor A3(2) required for antibiotic production. J Bacteriol 183(20):6009–6016CrossRefPubMedPubMedCentralGoogle Scholar
  35. Keijser BJF, van Wezel GP, Canters GW, Vijgenboom E (2002) Developmental regulation of the Streptomyces lividans ram genes: involvement of RamR in regulation of the ramCSAB operon. J Bacteriol 184(16):4420–4429CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kim JS, Lee HN, Kim P, Lee HS, Kim ES (2012) Negative role of wblA in response to oxidative stress in Streptomyces coelicolor. J Microbiol Biotechnol 22(6):736–741CrossRefPubMedGoogle Scholar
  37. Kim YJ, Moon MH, Song JY, Smith CP, Hong SK, Chang YK (2008) Acidic pH shock induces the expressions of a wide range of stress-response genes. BMC Genomics 9:604CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kohsaka M, Aoki H, Imanaka H (1987a) FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo) 40(9):1249–1255CrossRefGoogle Scholar
  39. Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, Goto T, Okuhara M, Kohsaka M, Aoki H (1987b) FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo) 40(9):1256–1265CrossRefGoogle Scholar
  40. Kint C, Verstraeten N, Hofkens J, Fauvart M, Michiels J (2014) Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis. Crit Rev Microbiol 40(3):207–224CrossRefPubMedGoogle Scholar
  41. Kormanec J, Farkasovský M (1993) Differential expression of principal sigma factor homologues of Streptomyces aureofaciens correlates with the developmental stage. Nucleic Acids Res 21(16):3647–3652CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100(1):95–97CrossRefPubMedGoogle Scholar
  43. Lee K, Cohen SN (2003) A Streptomyces coelicolor functional orthologue of Escherichia coli RNase E shows shuffling of catalytic and PNPase-binding domains. Mol Microbiol 48(2):349–360CrossRefPubMedGoogle Scholar
  44. Lodder J (1970) The yeasts, a taxonomic study. North Holland, Amsterdam, The NetherlandsGoogle Scholar
  45. Lounès A, Lebrihi A, Benslimane C, Lefebvre G, Germain P (1996) Regulation of spiramycin synthesis in Streptomyces ambofaciens: effects of glucose and inorganic phosphate. Appl Microbiol Biotechnol 45(1–2):204–211CrossRefPubMedGoogle Scholar
  46. Magasanik B (1961) Catabolite repression. Cold Spring Harb Symp Quant Biol 26:249–256CrossRefPubMedGoogle Scholar
  47. Mao XM, Luo S, Zhou RC, Wang F, Yu P, Sun N, Chen XX, Tang Y, Li YQ (2015) Transcriptional regulation of the daptomycin gene cluster in Streptomyces roseosporus by an autoregulator, AtrA. J Biol Chem 290:7992–8001CrossRefPubMedGoogle Scholar
  48. Martínez-Castro M, Salehi-Najafabadi Z, Romero F, Pérez-Sanchiz R, Fernández-Chimeno RI, Martín JF, Barreiro C (2013) Taxonomy and chemically semi-defined media for the analysis of the tacrolimus producer ‘Streptomyces tsukubaensis’. Appl Microbiol Biotechnol 97(5):2139–2152CrossRefPubMedGoogle Scholar
  49. Mehra S, Lian W, Jayapal KP, Charaniya SP, Sherman DH, Hu WS (2006) A framework to analyze multiple time series data: a case study with Streptomyces coelicolor. J Ind Microbiol Biotechnol 33(2):159–172CrossRefPubMedGoogle Scholar
  50. Mo S, Ban YH, Park JW, Yoo YJ, Yoon YJ (2009) Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor. J Ind Microbiol Biotechnol 36(12):1473–1482CrossRefPubMedGoogle Scholar
  51. Mo S, Lee SK, Jin YY, Oh CH, Suh JW (2013) Application of a combined approach involving classical random mutagenesis and metabolic engineering to enhance FK506 production in Streptomyces sp. RM7011. Appl Microbiol Biotechnol 97(7):3053–3062CrossRefPubMedGoogle Scholar
  52. Mo S, Lee SK, Jin YY, Suh JW (2016) Improvement of FK506 production in the high-yielding strain Streptomyces sp. RM7011 by engineering the supply of allylmalonyl-CoA through a combination of genetic and chemical approach. J Microbiol Biotechnol 26(2):233–240CrossRefPubMedGoogle Scholar
  53. Nodwell JR, McGovern K, Losick R (1996) An oligopeptide permease responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor. Mol Microbiol 22(5):881–893CrossRefPubMedGoogle Scholar
  54. Ordóñez-Robles M, Rodríguez-García A, Martín JF (2016) Target genes of the Streptomyces tsukubaensis FkbN regulator include most of the tacrolimus biosynthesis genes, a phosphopantetheinyl transferase and other PKS genes. Appl Microbiol Biotechnol 100(18):8091–8103CrossRefPubMedGoogle Scholar
  55. Ohné M (1975) Regulation of the dicarboxylic acid part of the citric acid cycle in Bacillus subtilis. J Bacteriol 122(1):224–234PubMedPubMedCentralGoogle Scholar
  56. Okamoto S, Ochi K (1998) An essential GTP-binding protein functions as a regulator for differentiation in Streptomyces coelicolor. Mol Microbiol 30(1):107–119CrossRefPubMedGoogle Scholar
  57. Park HS, Shin SK, Yang YY, Kwon HJ, Suh JW (2005) Accumulation of S-adenosylmethionine induced oligopeptide transporters including BldK to regulate differentiation events in Streptomyces coelicolor M145. FEMS Microbiol Lett 249(2):199–206CrossRefPubMedGoogle Scholar
  58. Park SJ, Gunsalus RP (1995) Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: role of the arcA, fnr, and soxR gene products. J Bacteriol 177(21):6255–6262CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pérez-Redondo R, Santamarta I, Bovenberg R, Martín JF, Liras P (2010) The enigmatic lack of glucose utilization in Streptomyces clavuligerus is due to inefficient expression of the glucose permease gene. Microbiology 156(Pt 5):1527–1537CrossRefPubMedGoogle Scholar
  60. Rabyk M, Ostash B, Rebets Y, Walker S, Fedorenko V (2011) Streptomyces ghanaensis pleiotropic regulatory gene wblA gh influences morphogenesis and moenomycin production. Biotechnol Lett 33(12):2481–2486CrossRefPubMedGoogle Scholar
  61. Revill WP, Bibb MJ, Scheu AK, Kieser HJ, Hopwood DA (2001) β-Ketoacyl acyl carrier protein synthase III (FabH) is essential for fatty acid biosynthesis in Streptomyces coelicolor A3(2). J Bacteriol 183(11):3526–3530CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rexer HU, Schäberle T, Wohlleben W, Engels A (2006) Investigation of the functional properties and regulation of three glutamine synthetase-like genes in Streptomyces coelicolor A3(2). Arch Microbiol 186(6):447–458CrossRefPubMedGoogle Scholar
  63. Rodríguez E, Banchio C, Diacovich L, Bibb MJ, Gramajo H (2001) Role of an essential acyl coenzyme A carboxylase in the primary and secondary metabolism of Streptomyces coelicolor A3(2). Appl Environ Microbiol 67(9):4166–4176CrossRefPubMedPubMedCentralGoogle Scholar
  64. Romero-Rodríguez A, Rocha D, Ruiz-Villafán B, Tierrafría V, Rodríguez-Sanoja R, Segura-González D, Sánchez S (2016a) Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor. BMC Microbiol 16(1):77CrossRefPubMedPubMedCentralGoogle Scholar
  65. Romero-Rodríguez A, Ruiz-Villafán B, Tierrafría V, Rodríguez-Sanoja R, Sánchez S (2016b) Carbon catabolite regulation of secondary metabolite formation and morphological differentiation in Streptomyces coelicolor. Appl Biochem Biotechnol 180(6):1152–1166CrossRefPubMedGoogle Scholar
  66. Ruiz B, Chávez A, Forero A, García-Huante Y, Romero A, Sánchez M, Rocha D, Sánchez B, Rodríguez-Sanoja R, Sánchez S, Langley E (2010) Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol 36(2):146–167CrossRefPubMedGoogle Scholar
  67. Saito N, Xu J, Hosaka T, Okamoto S, Aoki H, Bibb MJ, Ochi K (2006) EshA accentuates ppGpp accumulation and is conditionally required for antibiotic production in Streptomyces coelicolor A3(2). J Bacteriol 188(13):4952–4961CrossRefPubMedPubMedCentralGoogle Scholar
  68. Saito A, Shinya T, Miyamoto K, Yokoyama T, Kaku H, Minami E, Shibuya N, Tsujibo H, Nagata Y, Ando A, Fujii T, Miyashita K (2007) The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N,N'-diacetylchitobiose in Streptomyces coelicolor A3(2). Appl Environ Microbiol 73(9):3000–3008CrossRefPubMedPubMedCentralGoogle Scholar
  69. Saito A, Fujii T, Shinya T, Shibuya N, Ando A, Miyashita K (2008) The msiK gene, encoding the ATPhydrolysing component of N,N′-diacetylchitobiose ABC transporters, is essential for induction of chitinase production in Streptomyces coelicolor A3(2). Microbiology 154(11):3358–3365 doi: 10.1099/mic.0.2008/019612-0
  70. Salehi-Najafabadi Z, Barreiro C, Rodríguez-García A, Cruz A, López GE, Martín JF (2014) The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control. Appl Microbiol Biotechnol 98(11):4919–4936CrossRefPubMedGoogle Scholar
  71. Sánchez S, Chávez A, Forero A, García-Huante Y, Romero A, Sánchez M, Rocha D, Sánchez B, Avalos M, Guzmán-Trampe S, Rodríguez-Sanoja R, Langley E, Ruiz B (2010) Carbon source regulation of antibiotic production. J Antibiot (Tokyo) 63(8):442–459CrossRefGoogle Scholar
  72. Santos-Beneit F, Rodríguez-García A, Apel AK, Martín JF (2009) Phosphate and carbon source regulation of two PhoP-dependent glycerophosphodiester phosphodiesterase genes of Streptomyces coelicolor. Microbiology 155(Pt 6):1800–1811CrossRefPubMedGoogle Scholar
  73. Sidders B, Withers M, Kendall SL, Bacon J, Waddell SJ, Hinds J, Golby P, Movahedzadeh F, Cox RA, Frita R, Ten Bokum AMC, Wernisch L, Stoker NG (2007) Quantification of global transcription patterns in prokaryotes using spotted microarrays. Genome Biol 8(12):R265CrossRefPubMedPubMedCentralGoogle Scholar
  74. Smith CP, Chater KF (1988) Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. J Mol Biol 204(3):569–580CrossRefPubMedGoogle Scholar
  75. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:3CrossRefGoogle Scholar
  76. Singh BP, Behera BK (2009) Regulation of tacrolimus production by altering primary source of carbons and amino acids. Lett Appl Microbiol 49(2):254–259CrossRefPubMedGoogle Scholar
  77. Singh R, Reynolds KA (2015) Characterization of FabG and FabI of the Streptomyces coelicolor dissociated fatty acid synthase. Chembiochem 16(4):631–640CrossRefPubMedGoogle Scholar
  78. Sola-Landa A, Rodríguez-García A, Apel AK, Martín JF (2008) Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor. Nucleic Acids Res 36(4):1358–1368CrossRefPubMedPubMedCentralGoogle Scholar
  79. Solovyev V, Salamov A (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Li RW (ed) Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science, New York, pp 61–78Google Scholar
  80. Strakova E, Zikova A, Vohradsky J (2014) Inference of sigma factor controlled networks by using numerical modeling applied to microarray time series data of the germinating prokaryote. Nucleic Acids Res 42(2):748–763CrossRefPubMedGoogle Scholar
  81. Swiatek MA, Gubbens J, Bucca G, Song E, Yang YH, Laing E, Kim BG, Smith CP, van Wezel GP (2013) The ROK family regulator Rok7B7 pleiotropically affects xylose utilization, carbon catabolite repression, and antibiotic production in Streptomyces coelicolor. J Bacteriol 195(6):1236–1248CrossRefPubMedPubMedCentralGoogle Scholar
  82. Uguru GC, Stephens KE, Stead JA, Towle JE, Baumberg S, McDowall KJ (2005) Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol Microbiol 58(1):131–150CrossRefPubMedGoogle Scholar
  83. van der Ploeg JR, Eichhorn E, Leisinger T (2001) Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch Microbiol 176(1–2):1–8CrossRefPubMedGoogle Scholar
  84. van Wezel GP, White J, Bibb MJ, Postma PW (1997a) The malEFG gene cluster of Streptomyces coelicolor A3(2): characterization, disruption and transcriptional analysis. Mol Gen Genet 254(5):604–608CrossRefPubMedGoogle Scholar
  85. van Wezel GP, White J, Young P, Postma PW, Bibb MJ (1997b) Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacl-galR family of regulatory genes. Mol Microbiol 23(3):537–549CrossRefPubMedGoogle Scholar
  86. van Wezel GP, Mahr K, König M, Traag BA, Pimentel-Schmitt EF, Willimek A, Titgemeyer F (2005) GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol Microbiol 55(2):624–636CrossRefPubMedGoogle Scholar
  87. van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28(7):1311–1333CrossRefPubMedGoogle Scholar
  88. Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72(5):3653–3661CrossRefPubMedPubMedCentralGoogle Scholar
  89. Vujaklija D, Horinouchi S, Beppu T (1993) Detection of an A-factor-responsive protein that binds to the upstream activation sequence of strR, a regulatory gene for streptomycin biosynthesis in Streptomyces griseus. J Bacteriol 175(9):2652–2661CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wang CM, Cane DE (2008) Biochemistry and molecular genetics of the biosynthesis of the earthy odorant methylisoborneol in Streptomyces coelicolor. J Am Chem Soc 130(28):8908–8909CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wang YY, Zhang XS, Luo HD, Ren NN, Jiang XH, Jiang H, Li YQ (2016) Characterization of discrete phosphopantetheinyl transferases in Streptomyces tsukubaensis L19 unveils a complicate phosphopantetheinylation network. Sci Rep 6:24255CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wanner BL (1993) Gene regulation by phosphate in enteric bacteria. J Cell Biochem 51(1):47–54CrossRefPubMedGoogle Scholar
  93. Yoon YJ, Choi CY (1997) Nutrient effects on FK-506, a new immunosuppressant, production by Streptomyces sp. in a defined medium. J Ferment Bioeng 83(6):599–603CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Área de Microbiología, Facultad de Ciencias Biológicas y AmbientalesUniversidad de LeónLeónSpain
  2. 2.Instituto de Biotecnología de León, INBIOTECLeónSpain
  3. 3.Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical SchoolNewcastle UniversityNewcastle upon TyneUK
  4. 4.Departamento de Biotecnología y Ciencia de los Alimentos, Facultad de CienciasUniversidad de BurgosBurgosSpain

Personalised recommendations