Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 23–24, pp 8621–8631 | Cite as

1-Ethyl-3-methylimidazolium tolerance and intracellular lipid accumulation of 38 oleaginous yeast species

  • Irnayuli R. Sitepu
  • Luis A. Garay
  • Lauren Enriquez
  • Russell Fry
  • John H. Butler
  • Julian M. Lopez
  • Atit Kanti
  • Sarah A. Faulina
  • Agustinus J. Nugroho
  • Blake A. Simmons
  • Steven W. Singer
  • Christopher W. Simmons
  • Kyria Boundy-MillsEmail author
Bioenergy and biofuels

Abstract

Pretreatment with ionic liquids (IL) such as 1-ethyl-3-methylimidazolium chloride or acetate is an effective method for aiding deconstruction of lignocellulosic biomass; however, the residual IL remaining in hydrolysates can be inhibitory to growth of ethanologenic or oleaginous yeasts that have been examined in the literature. The aim of this study was to identify oleaginous yeasts that are tolerant of the IL [C2C1Im][OAc] and [C2C1Im]Cl using 45 strains belonging to 38 taxonomically diverse species within phyla Ascomycota and Basidiomycota. Yeasts were cultivated in laboratory medium supplemented with 0, 2, or 4% IL in 96-well plates. The eight most tolerant strains were then cultivated in 10-mL media with no IL, 242mM [C2C1Im][OAc], or 242mM [C2C1Im]Cl. The effects of [C2C1Im]+ exposure on cell mass production and lipid accumulation varied at the species and strain level. The acetate salt decreased cell biomass and lipid production more severely than did the chloride ion for six strains. Lipid output was not markedly different (2.1 vs. 2.3 g/L) in Yarrowia lipolytica UCDFST 51-30, but decreased from 5 to 65% in other yeasts. An equimolar concentration of the chloride salt resulted in much milder effects, from 25% decrease to 66% increase in lipid output. The highest lipid outputs in this media were 8.3 and 7.9 g/L produced by Vanrija humicola UCDFST 10-1004 and UCDFST 12-717, respectively. These results demonstrated substantial lipid production in the presence of [C2C1Im]Cl at concentrations found in lignocellulosic hydrolysates, and thus, these two strains are ideal candidates for further investigation.

Keywords

Triacylgylcerols Biodiesel 1-Ethyl-3-methylimidazolium acetate Pretreatment Lignocellulosic biofuels Oleaginous yeast 

Notes

Acknowledgments

The authors thank Shuang Shi, Florencia Chua, Idelia Chandra, Erin Cathcart, Jennifer Lincoln, and Vania Rahardjo of the Department of Food Science and Technology, UC, Davis, for the technical assistance. The authors are grateful to the anonymous reviewers, whose comments and suggestions greatly improved the manuscript.

Funding information

This project was supported by the United States Department of Agriculture (USDA) Agricultural Food Research Initiative of the National Food and Agriculture, USDA, Grant No. 35621-04750. This work was partially supported by the Science Translation and Innovation Research (STAIR) Grant Program of the University of California, Davis. The portion of the work carried out at the DOE Joint BioEnergy Institute (http://www.jbei.org) was supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy.

Compliance with ethical standards

Some yeasts used in this study were isolated and identified as part of a collaborative project with Indonesian Institute of Sciences (LIPI); Research, Development and Innovation Agency, the Ministry of Environment and Forestry; and the Government of the Republic of Indonesia, funded by Grant Number U01TW008160 from the National Institute of Health (NIH) Fogarty International Center (FIC), the NIH Office of Dietary Supplements, the National Science Foundation (NSF), and the Department of Energy (DOE). The content is solely the responsibility of the authors and does not necessarily represent the official views of the FIC or the NIH, the Office of Dietary Supplements, the NSF, the DOE, or the USDA. The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2017_8506_MOESM1_ESM.pdf (257 kb)
ESM 1 (PDF 256 kb)

References

  1. Alvarez MS, Rodriguez A, Sanroman MA, Deive FJ (2015) Microbial adaptation to ionic liquids. RSC Adv 5(23):17379–17382.  https://doi.org/10.1039/C4RA10283E CrossRefGoogle Scholar
  2. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technol 101(13):4851–4861.  https://doi.org/10.1016/j.biortech.2009.11.093 CrossRefGoogle Scholar
  3. Bae J-H, Sohn J-H, Park C-S, Rhee J-S, Choi E-S (2003) Integrative transformation system for the metabolic engineering of the sphingoid base-producing yeast Pichia ciferrii. Appl Environ Microbiol 69(2):812–819.  https://doi.org/10.1128/aem.69.2.812-819.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48(6):375–387.  https://doi.org/10.1016/j.plipres.2009.08.005 CrossRefPubMedGoogle Scholar
  5. Beopoulos A, Desfougeres T, Sabirova J, Nicaud J-M (2010) Yarrowia lipolytica as a cell factory for oleochemical biotechnology. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  6. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74(24):7779–7789.  https://doi.org/10.1128/AEM.01412-08 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Botham P, Ratledge C (1979) A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous micro-organisms. J Gen Microbiol 114(2):361–375CrossRefPubMedGoogle Scholar
  8. Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95.  https://doi.org/10.1002/bit.21047
  9. Damude HG, Gillies PJ, Macool DJ, Picataggio SK, Pollak DMW, Ragghianti JJ, Xue Z, Yadav NS, Zhang H, Zhu QQ (2011) High eicosapentaenoic acid producing strains of Yarrowia lipolytica. Google PatentsGoogle Scholar
  10. Damude HG, Macool DJ, Picataggio SK, Ragghianti JJ, Seip JE, Xue Z, Yadav NS, Zhang H, Zhu QQ (2009) Docosahexaenoic acid producing strains of Yarrowia lipolytica. Google PatentsGoogle Scholar
  11. Datta S, Holmes B, Park JI, Chen Z, Dibble DC, Hadi M, Blanch HW, Simmons BA, Sapra R (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 12(2):338–345.  https://doi.org/10.1039/B916564A CrossRefGoogle Scholar
  12. Dickinson Q, Bottoms S, Hinchman L, McIlwain S, Li S, Myers CL, Boone C, Coon JJ, Hebert A, Sato TK, Landick R, Piotrowski JS (2016) Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. Microb Cell Factories 15(1):17.  https://doi.org/10.1186/s12934-016-0417-7 CrossRefGoogle Scholar
  13. Docherty KM, Charles F, Kulpa J (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7.  https://doi.org/10.1039/b419172b
  14. Ganske F, Bornscheuer UT (2006) Growth of Escherichia coli, Pichia pastoris and Bacillus cereus in the presence of the ionic liquids [BMIM][BF4] and [BMIM][PF6] and organic solvents. Biotechnol Lett 28(7):465–469CrossRefPubMedGoogle Scholar
  15. Garay LA, Sitepu IR, Cajka T, Chandra I, Shi S, Lin T, German JB, Fiehn O, Boundy-Mills KL (2016) Eighteen new oleaginous yeast species. J Ind Microbiol Biotechnol:1-14.  https://doi.org/10.1007/s10295-016-1765-3
  16. Golomb BL, Morales V, Jung A, Yau B, Boundy-Mills KL, Marco ML (2013) Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microbiol 33(1):97–106CrossRefPubMedGoogle Scholar
  17. Gong Z, Shen H, Yang X, Wang Q, Xie H, Zhao ZK (2014) Lipid production from corn stover by the oleaginous yeast Cryptococcus curvatus. Biotechnol Biofuels 7(1):1CrossRefGoogle Scholar
  18. Haas T, Kircher M, Kohler T, Wich G, Schorken U, Hagen R (2009) Chapter 12: White biotechnology sustainable solutions for modern economies. Royal Soc Chem 436–478Google Scholar
  19. Huang C, Chen X-F, Xiong L, Chen X-D, Ma L-L, Chen Y (2013a) Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv 31:129–139CrossRefPubMedGoogle Scholar
  20. Huang Q, Wang Q, Gong Z, Jin G, Shen H, Xiao S, Xie H, Ye S, Wang J, Zhao ZK (2013b) Effects of selected ionic liquids on lipid production by the oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 130:339–344.  https://doi.org/10.1016/j.biortech.2012.12.022 CrossRefPubMedGoogle Scholar
  21. Jin L, Ko SR, Lee HG, Kim BH, Kim HS, Ahn CY (2015) Chelatococcus caeni sp nov., isolated from a biofilm reactor sludge sample. Int J Sys Evol Microbiol 65.  https://doi.org/10.1099/ijs.0.000032
  22. Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018.  https://doi.org/10.1016/j.biortech.2015.11.022 CrossRefPubMedGoogle Scholar
  23. Khudyakov JI, D’haeseleer P, Borglin SE, DeAngelis KM, Woo H, Lindquist EA, Hazen TC, Simmons BA, Thelen MP (2012) Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus. Proc Natl Acad Sci 109(32):E2173–E2182.  https://doi.org/10.1073/pnas.1112750109 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kim D, Rahman A, Sitepu IR, Hashidoko Y (2013) Accelerated degradation of exogenous indole by Burkholderia unamae strain CK43B exposed to pyrogallol-type polyphenols. Biosci Biotechnol Biochem 77(8):1722–1727CrossRefPubMedGoogle Scholar
  25. Liu L, Hu Y, Wen P, Li N, Zong M, Ou-Yang B, Wu H (2015) Evaluating the effects of biocompatible cholinium ionic liquids on microbial lipid production by Trichosporon fermentans. Biotechnol Biofuels 8(1):1–9.  https://doi.org/10.1186/s13068-015-0299-7 CrossRefGoogle Scholar
  26. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5CrossRefGoogle Scholar
  27. Ouellet M, Datta S, Dibble DC, Tamrakar PR, Benke PI, Li C, Singh S, Sale KL, Adams PD, Keasling JD, Simmons BA, Holmes BM, Mukhopadhyay A (2011) Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production. Green Chem:13.  https://doi.org/10.1039/c1gc15327g
  28. Pastinen O (2002) Xylose isomerase from Streptomyces rubiginosus: stability, novel reactions and applications. Doctoral Thesis, Helsinki University of Technology, Espoo, FinlandGoogle Scholar
  29. Sitepu I, Selby T, Lin T, Zhu S, Boundy-Mills K (2014a) Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species. J Ind Microbiol Biotechnol:1-10.  https://doi.org/10.1007/s10295-014-1447-y
  30. Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL (2014b) Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv 32(7):1336–1360.  https://doi.org/10.1016/j.biotechadv.2014.08.003 CrossRefPubMedGoogle Scholar
  31. Sitepu IR, Ignatia L, Franz AK, Wong DM, Faulina SA, Tsui M, Kanti A, Boundy-Mills K (2012) An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J Microbiol Methods 91(2):321–328.  https://doi.org/10.1016/j.mimet.2012.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sitepu IR, Jin M, Fernandez JE, da Costa Sousa L, Balan V, Boundy-Mills KL (2014c) Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover. Appl Microbiol Biot:1–13Google Scholar
  33. Suutari M, Priha P, Laakso S (1993) Temperature shifts in regulation of lipids accumulated by Lipomyces starkeyi. J Am Oil Chem Soc 70(9):891–894.  https://doi.org/10.1007/BF02545349 CrossRefGoogle Scholar
  34. Taj-Aldeen SJ, Doiphode SH, Han XY (2006) Kodamaea (Pichia) ohmeri fungaemia in a premature neonate. J Med Microbiol 55(2):237–239Google Scholar
  35. Thelen MP, Higgins DA, Ruegg TL (2016) Engineered microorganisms having resistance to ionic liquids. US Patent 20,160,090,405Google Scholar
  36. van der Klei I, Veenhuis M, Brul S, Klis FM, De Groot PWJ, Müller WH, van Driel KGA, Boekhout T (2011) Chapter 8—Cytology, cell walls and septa: a summary of yeast cell biology from a phylogenetic perspective the yeasts (fifth edition). Elsevier, London, pp 111–128Google Scholar
  37. Xie H, Shen H, Gong Z, Wang Q, Zhao ZK, Bai F (2012) Enzymatic hydrolysates of corn stover pretreated by a N-methylpyrrolidone-ionic liquid solution for microbial lipid production. Green Chem 14(4):1202–1210.  https://doi.org/10.1039/C2GC00033D CrossRefGoogle Scholar
  38. Zhao G, Chen X, Wang L, Zhou S, Feng H, Chen WN, Lau R (2013) Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresour Technol 128:337–344.  https://doi.org/10.1016/j.iortech.2012.10.038 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Irnayuli R. Sitepu
    • 1
    • 2
  • Luis A. Garay
    • 1
  • Lauren Enriquez
    • 1
  • Russell Fry
    • 1
  • John H. Butler
    • 1
  • Julian M. Lopez
    • 1
  • Atit Kanti
    • 3
  • Sarah A. Faulina
    • 4
  • Agustinus J. Nugroho
    • 3
  • Blake A. Simmons
    • 5
    • 6
  • Steven W. Singer
    • 5
    • 6
  • Christopher W. Simmons
    • 1
  • Kyria Boundy-Mills
    • 1
    Email author
  1. 1.Phaff Yeast Culture Collection, Department of Food Science and TechnologyUniversity of CaliforniaDavisUSA
  2. 2.Department of BiotechnologyIndonesia International Institute for Life Sciences (i3L)JakartaIndonesia
  3. 3.Research Center for BiologyIndonesian Institute of SciencesBogorIndonesia
  4. 4.Research, Development, and Innovation Agency, Ministry of Environment and ForestryBogorIndonesia
  5. 5.Joint BioEnergy InstituteEmeryvilleUSA
  6. 6.Biological and Systems Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations