Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 19, pp 7347–7356 | Cite as

Key role of alternative oxidase in lovastatin solid-state fermentation

  • Ailed Pérez-Sánchez
  • Salvador Uribe-Carvajal
  • Alfredo Cabrera-Orefice
  • Javier Barrios-González
Applied Microbial and Cell Physiology

Abstract

Lovastatin is a commercially important secondary metabolite produced by Aspergillus terreus, either by solid-state fermentation or by submerged fermentation. In a previous work, we showed that reactive oxygen species (ROS) accumulation in idiophase positively regulates lovastatin biosynthetic genes. In addition, it has been found that lovastatin-specific production decreases with aeration in solid-state fermentation (SSF). To study this phenomenon, we determined ROS accumulation during lovastatin SSF, under high and low aeration conditions. Paradoxically, high aeration caused lower ROS accumulation, and this was the underlying reason of the aeration effect on lovastatin production. Looking for a mechanism that is lowering ROS production under those conditions, we studied alternative respiration. The alternative oxidase provides an alternative route for electrons passing through the electron transport chain to reduce oxygen. Here, we showed that an alternative oxidase (AOX) is expressed in SSF, and only during idiophase. It was shown that higher aeration induces higher alternative respiration (AOX activity), and this is a mechanism that limits ROS generation and keeps them within healthy limits and adequate signaling limits for lovastatin production. Indeed, the aox gene was induced in idiophase, i.e., at the time of ROS accumulation. Moreover, exogenous ROS (H2O2), added to lovastatin solid-state fermentation, induced higher AOX activity. This suggests that high O2 availability in SSF generates dangerously high ROS, so alternative respiration is induced in SSF, indirectly favoring lovastatin production. Conversely, alternative respiration was not detected in lovastatin-submerged fermentation (SmF), although exogenous ROS also induced relatively low AOX activity in SmF.

Keywords

Alternative respiration Role in lovastatin regulation Solid-state fermentation 

Notes

Acknowledgements

This study was funded by CONACyT, Mexico, project CB-2013-01 222028.

Compliance with ethical standards

This article does not contain any studies with human participants or animals, performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Avila N, Tarrago-Castellanos MR, Barrios-Gonzalez J (2017) Environmental cues that induce the physiology of solid medium: a study on lovastatin production by Aspergillus terreus. J Appl Microbiol 122:1029–1038. doi: 10.1111/jam.13391 CrossRefPubMedGoogle Scholar
  2. Bai Z, Harvey LM, McNeil B (2003a) Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23:267–302. doi: 10.1080/07388550390449294 CrossRefPubMedGoogle Scholar
  3. Bai Z, Harvey LM, McNeil B (2003b) Physiological responses of chemostat cultures of Aspergillus niger (B1-D) to simulated and actual oxidative stress. Biotechnol Bioeng 82:691–701. doi: 10.1002/bit.10614 CrossRefPubMedGoogle Scholar
  4. Bai Z, Harvey LM, White S, McNeil B (2004) Effects of oxidative stress on production of heterologous and native protein, and culture morphology in batch and chemostat cultures of Aspergillus niger B1-D. Enzym Microb Technol 34:10–21. doi: 10.1016/j.enzmictec.2003.07.008 CrossRefGoogle Scholar
  5. Baños JG, Tomasini A, Szakacs G, Barrios-Gonalez J (2009) High lovastatin production by Aspergillus terreus in solid-state fermentation on polyurethane foam: an artificial inert support. J Biosci Bioeng 108:105–110. doi: 10.1016/j.jbiosc.2009.03.006 CrossRefPubMedGoogle Scholar
  6. Barrios-Gonzalez J (2012) Solid-state fermentation: physiology of solid medium, its molecular basis and applications. Process Biochem 47:175–185. doi: 10.1016/j.procbio.2011.11.016 CrossRefGoogle Scholar
  7. Barrios-Gonzalez J, Miranda R (2010) Biotechnological production and applications of statins. Appl Microbiol Biotechnol 85:869–883. doi: 10.1007/s00253-009-2239-6 CrossRefPubMedGoogle Scholar
  8. Barrios-Gonzalez J, Baños JG, Covarrubias AA, Garay-Arroyo A (2008) Lovastatin biosynthetic genes of Aspergillus terreus are expressed differentially in solid-state and in liquid submerged fermentation. Appl Microbiol Biotechnol 79:179–186. doi: 10.1007/s00253-008-1409-2 CrossRefPubMedGoogle Scholar
  9. Fierro F, Montenegro E, Gutiérrez S, Martín JF (1996) Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin gene cluster at a specific site within a conserved hexanucleotide sequence. Appl Microbiol Biotechnol 44:59–604. doi: 10.1007/BF00172491
  10. Hayyan M, Hashim MA, AlNashef IM (2016) Superoxide ion: generation and chemical implications. Chem Rev 116:3029–3085. doi: 10.1021/acs.chemrev.5b00407
  11. Joseph-Horne T, Hollomon DW, Wood PM (2001) Fungal respiration: a fusion of standard and alternative components. Biochim Biophys Acta Bioenergetics 1504(2-3):179-195. doi: 10.1016/S0005-2728(00)00251-6
  12. Li Q, Harvey LM, McNeil B (2009) Oxidative stress in industrial fungi. Crit Rev Biotechnol 29:199–213. doi: 10.1080/07388550903004795 CrossRefPubMedGoogle Scholar
  13. Minagawa N, Koga S, Nakano M, Sakajo S, Yoshimoto A (1992) Possible involvement of superoxide anion in the induction of cyanide-resistant respiration in Hansenula anomala. FEBS Lett 302:217–219. doi: 10.1016/0014-5793(92)80444-l CrossRefPubMedGoogle Scholar
  14. Miranda RU, Gomez-Quiroz LE, Mejıa A, Barrios-Gonzalez J (2013) Oxidative sate in idiophase links reactive oxygen species (ROS) and lovastatin biosynthesis: differences and similarities in submerged-and solid-sate fermentations. Fungal Biol 117:85–93. doi: 10.1016/j.funbio.2012.12.001 CrossRefPubMedGoogle Scholar
  15. Miranda RU, Gomez-Quiroz LE, Mendoza M, Perez-Sanchez A, Fierro F, Barrios-Gonzalez J (2014) Reactive oxygen species regulate lovastatin biosynthesis in Aspergillus terreus during submerged and solid-state fermentation. Fungal Biol 118:879–989. doi: 10.1016/j.funbio.2014.09.002 CrossRefGoogle Scholar
  16. Moore AL, Albury MS, Crichton PG, Affourtit C (2002) Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci 7:478–481. doi: 10.1016/S1360-1385(02)02366-X
  17. Narasaiah KV, Sashidhar RB, Subramanyam C (2006) Biochemical analysis of oxidative stress in the production of aflatoxin and its precursor intermediates. Mycopathologia 162:179–189. doi: 10.1007/s11046-006-0052-7 CrossRefPubMedGoogle Scholar
  18. Ooijkaas LP, Tramper J, Buitelaar RM (1998) Biomass estimation of Coniothyrium minitans in solid-state fermentation. Enzym Microb Technol 22:480–486. doi: 10.1023/A:1018545932104
  19. Pei-lian W, Pei-lin C, Chun-qi S (2006) Comparison of three biomass estimation methods in solid-state fermentation. J Food Sci Biotechnol 25:1673–1689Google Scholar
  20. Sigler K, Chaloupka J, Brozmanova J, Stadler N, Höfer M (1999) Oxidative stress in microorganisms —I: microbial vs. higher cells—damage and defenses in relation to cell aging and death. Folia Microbiol 44:587–624Google Scholar
  21. Suryanarayan S (2003) Current industrial practice in solid-state fermentations for secondary metabolite production: the Biocon India experience. Biochem Eng J 13:189–195. doi: 10.1016/s1369-703x(02)00131-6 CrossRefGoogle Scholar
  22. Szakács G, Morovján, Tengerdy RP (1998) Production of lovastatin by a wild strain of Aspergillus terreus. Biotechnol Lett 20:411–415. doi: 10.1023/A:1005391716830 CrossRefGoogle Scholar
  23. Tomasini A, Fajardo C, Barrios-González J (1997) Giberellic acid production using different solidstate fermentation systems. World J Microbiol Biotechnol 13:203-206. doi: 10.1023/A:1018545932104
  24. Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414. doi: 10.1016/0003-9861(85)90293-0
  25. Wongwicharn A, McNeil B, Harvey LM (1999) Effect of oxygen enrichment on morphology, growth, and heterologous protein production in chemostat cultures of Aspergillus niger B1-D. Biotechnol Bioeng 65:416–424. doi: 10.1002/(sici)1097-0290(19991120)65:4<416::aid-bit6>3.0.co;2-z CrossRefPubMedGoogle Scholar
  26. Yukioka H, Inagaki S, Tanaka R, Katoh K, Miki N, Mizutani A, Masuko M (1998) Transcriptional activation of the alternative oxidase gene of the fungus Magnaporthe grisea by a respiratory-inhibiting fungicide and hydrogen peroxide. Biochim Biophys Acta 1442:161–169. doi: 10.1016/s0167-4781(98)00159-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ailed Pérez-Sánchez
    • 1
  • Salvador Uribe-Carvajal
    • 2
  • Alfredo Cabrera-Orefice
    • 2
  • Javier Barrios-González
    • 1
  1. 1.Departamento de BiotecnologíaUniversidad Autónoma Metropolitana-IztapalapaMexico CityMexico
  2. 2.Instituto de Fisiología Celular, Cdad. UniversitariaUNAMMexico CityMexico

Personalised recommendations