Applied Microbiology and Biotechnology

, Volume 101, Issue 18, pp 6969–6980 | Cite as

Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress

  • Raphael Hermano Santos Diniz
  • Juan C. Villada
  • Mariana Caroline Tocantins Alvim
  • Pedro Marcus Pereira Vidigal
  • Nívea Moreira Vieira
  • Mónica Lamas-Maceiras
  • María Esperanza Cerdán
  • María-Isabel González-Siso
  • Petri-Jaan Lahtvee
  • Wendel Batista da SilveiraEmail author
Genomics, Transcriptomics, Proteomics


The thermotolerant yeast Kluyveromyces marxianus displays a potential to be used for ethanol production from both whey and lignocellulosic biomass at elevated temperatures, which is highly alluring to reduce the cost of the bioprocess. Nevertheless, contrary to Saccharomyces cerevisiae, K. marxianus cannot tolerate high ethanol concentrations. We report the transcriptional profile alterations in K. marxianus under ethanol stress in order to gain insights about mechanisms involved with ethanol response. Time-dependent changes have been characterized under the exposure of 6% ethanol and compared with the unstressed cells prior to the ethanol addition. Our results reveal that the metabolic flow through the central metabolic pathways is impaired under the applied ethanol stress. Consistent with these results, we also observe that genes involved with ribosome biogenesis are downregulated and gene-encoding heat shock proteins are upregulated. Remarkably, the expression of some gene-encoding enzymes related to unsaturated fatty acid and ergosterol biosynthesis decreases upon ethanol exposure, and free fatty acid and ergosterol measurements demonstrate that their content in K. marxianus does not change under this stress. These results are in contrast to the increase previously reported with S. cerevisiae subjected to ethanol stress and suggest that the restructuration of K. marxianus membrane composition differs in the two yeasts which gives important clues to understand the low ethanol tolerance of K. marxianus compared to S. cerevisiae.


Kluyveromyces marxianus Transcriptome Ethanol stress Membrane 



This study was supported by the Brazilian Agencies CNPq (National Science and Technology Development Council), CAPES (Coordination for the Improvement of Higher Education Personnel), and FAPEMIG (Foundation for Research Support of the State of Minas Gerais). The work carried out at Universidade da Coruña was cofunded from Xunta de Galicia (Consolidación D.O.G. 10-10-2012. Contract no. 2012/118 and D.O.G 12-20-2016 Contract no ED431C-2016-012) cofinanced by FEDER. The work performed at University of Tartu was funded by European Research Council (project SynBioTEC) and Estonian Research Council (grant PUT1488). The authors thank the Center for Analysis of Biomolecules of Universidade Federal de Viçosa for the equipment and software used in this study.

Authors’ contributions

RHSD, MLM, and NMV executed the bench procedures. PJL, PMPV, and JCV performed the bioinformatics procedures. JCV, PJL, and WBDS analyzed the data. MIGS and MEC supervised the work at the Spanish laboratory and contributed to data interpretation. JCV, MCTA, PJL, and WBDS wrote the manuscript. WBDS designed and supervised the overall of research project. All authors have read and approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2017_8432_MOESM1_ESM.pdf (3.4 mb)
ESM 1 (PDF 3532 kb)


  1. Alexa A, Rahnenführer J (2016) topGO: enrichment analysis for gene ontology. R package version 2.26.0. Accessed 19 June 2017
  2. Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498(1):98–103. doi: 10.1016/S0014-5793(01)02503-0 CrossRefPubMedGoogle Scholar
  3. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. doi: 10.1186/gb-2010-11-10-r106 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bellaver L, Carvalho NM, Abrahão-Neto J, Gombert A (2004) Ethanol formation and enzyme activities around glucose-6-phosphate in Kluyveromyces marxianus CBS 6556 exposed to glucose or lactose excess. FEMS Yeast Res 4(7):691–698. doi: 10.1016/j.femsyr.2004.01.004 CrossRefPubMedGoogle Scholar
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300Google Scholar
  6. Bragança CR, Colombo LT, Roberti AS, Alvim MCT, Cardoso SA, Reis KC, Paula SO, Silveira WB, Passos FML (2014) Construction of recombinant Kluyveromyces marxianus UFV-3 to express dengue virus type 1 nonstructural protein 1 (NS1). Appl Microbiol Biotechnol 99(3):1191–1203. doi: 10.1007/s00253-014-5963-5 CrossRefPubMedGoogle Scholar
  7. Cabiscol E, Bellí G, Tamarit J, Echave P, Herrero E, Ros J (2002) Mitochondrial Hsp60, resistance to oxidative stress, and the labile iron pool are closely connected in Saccharomyces cerevisiae. J Biol Chem 277:44531–44538. doi: 10.1074/jbc.M206525200 CrossRefPubMedGoogle Scholar
  8. Chandler M, Stanley GA, Rogers P, Chambers P (2004) A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae. Ann Microbiol 54:427–454. doi: 10.1111/j.1365-2672.2009.04657.x Google Scholar
  9. Costa DA, Souza CJ, Costa PSS, Rodrigues MQ, Santos AFF, Lopes MR, Genier HL, Silveira WB, Fietto LG (2014) Physiological characterization of thermotolerant yeast for cellulosic ethanol production. Appl Microbiol Biotechnol 98(8):3829–3840. doi: 10.1007/s00253-014-5580-3 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dinh TN, Nagahisa K, Yoshikawa K, Hirasawa T, Furusawa C, Shimizu H (2009) Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Bioprocess Biosyst Eng 32:681. doi: 10.1007/s00449-008-0292-7 CrossRefPubMedGoogle Scholar
  11. Diniz RHS, Silveira WB, Fietto LG, Passos FML (2012) The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. A Van Leeuw 101(3):541–550. doi: 10.1007/s10482-011-9668-9 CrossRefGoogle Scholar
  12. Diniz RHS, Rodrigues MQRB, Fietto LG, Passos FML, Silveira WB (2014) Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3. Biocatal Agric Biotechnol 3(2):111–117. doi: 10.1016/j.bcab.2013.09.002 Google Scholar
  13. Doğan A, Demirci S, Aytekin AO, Şahin F (2014) Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl Biochem Biotechnol 174(1):28–42. doi: 10.1007/s12010-014-1006-z CrossRefPubMedGoogle Scholar
  14. Du X, Takagi H (2007) N-acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biotechnol 75(6):1343–1351. doi: 10.1007/s00253-007-0940-x CrossRefPubMedGoogle Scholar
  15. Ferreira PG, Silveira FA, Santos RCV, Genier HLA, Diniz RHS, Ribeiro JI, Fietto LG, Passos FML, Silveira WB (2015) Optimizing ethanol production by thermotolerant Kluyveromyces marxianus CCT 7735 in a mixture of sugarcane bagasse and ricotta whey. Food Sci Biotechnol 24(4):1421–1427. doi: 10.1007/s10068-015-0182-0 CrossRefGoogle Scholar
  16. Fonseca G, Heinzle E, Wittmann C, Gombert A (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79(3):339–354. doi: 10.1007/s00253-008-1458-6 CrossRefPubMedGoogle Scholar
  17. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11(12):4241–4257. doi: 10.1091/mbc.11.12.4241 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80. doi: 10.1186/gb-2004-5-10-r80 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315(5813):808–810. doi: 10.1126/science.1137013 CrossRefPubMedGoogle Scholar
  20. González-Siso MI, Freire Picos MA, Cerdán ME (1996) Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactis rag2 mutants. FEBS Lett 387(1):7–10. doi: 10.1016/0014-5793(96)00390-0 CrossRefPubMedGoogle Scholar
  21. González-Siso MI, García-Leiro A, Tarrío N, Cerdán ME (2009) Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis. Microb Cell Fact 8:46. doi: 10.1186/1475-2859-8-46 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Heipieper H, Isken S, Saliola M (2000) Ethanol tolerance and membrane fatty acid adaptation in adh multiple and null mutants of Kluyveromyces lactis. Res Microbiol 151(9):777–784. doi: 10.1016/S0923-2508(00)01143-8 CrossRefPubMedGoogle Scholar
  23. Hofmann E, Eschrich K, Schellenberger W (1985) Temporal organization of the phosphofructokinase/fructose-1,6-biphosphatase cycle. Adv Enzym Regul 23:331–362. doi: 10.1016/0065-2571(85)90055-X CrossRefGoogle Scholar
  24. Kasavi C, Eraslan S, Oner ET, Kirdar B (2016) An integrative analysis of transcriptomic response of ethanol tolerant strains to ethanol in Saccharomyces cerevisiae. Mol BioSyst 12:464–476. doi: 10.1039/c5mb00622h CrossRefPubMedGoogle Scholar
  25. Lahtvee PJ, Kumar R, Hallström BM, Nielsen J (2016) Adaptation to different types of stress converge on mitochondrial metabolism. Mol Biol Cell 27(15):2505–2514. doi: 10.1091/mbc.E16-03-0187 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lam FH, Ghaderi A, Fink GR, Stephanopoulos G (2014) Engineering alcohol tolerance in yeast. Science 346(6205):71–75. doi: 10.1126/science.1257859 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Li BZ, Cheng JS, Ding MZ, Yuan YJ (2010) Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress. J Biotechnol 148(4):194–203. doi: 10.1016/j.jbiotec.2010.06.013 CrossRefPubMedGoogle Scholar
  28. Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190(4):1157–1195. doi: 10.1534/genetics.111.128033 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Navarro-Tapia E, Nana RK, Querol A, Pérez-Torrado R (2016) Ethanol cellular defense induce unfolded protein response in yeast. Front Microbiol 7:189. doi: 10.3389/fmicb.2016.00189 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127. doi: 10.1111/j.1574-6968.1995.tb07925.x CrossRefPubMedGoogle Scholar
  31. Radecka D, Mukherjee V, Mateo R, Stojiljkovic M, Foulquié-Moreno M, Thevelein J (2015) Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 15(6):fov053. doi: 10.1093/femsyr/fov053 CrossRefPubMedGoogle Scholar
  32. Rocha SN, Abrahão-Neto J, Cerdán ME, Gombert AK, González-Siso MI (2010) Heterologous expression of a thermophilic esterase in Kluyveromyces yeasts. Appl Microbiol Biotechnol 89(2):375–385. doi: 10.1007/s00253-010-2869-8 CrossRefPubMedGoogle Scholar
  33. Rocha SN, Abrahão-Neto J, Cerdán ME, González-Siso MI, Gombert AK (2011) Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microb Cell Factories 9:4. doi: 10.1186/1475-2859-9-4 CrossRefGoogle Scholar
  34. Rodicio R, Heinisch JJ (2013) Yeast on the milky way: genetics, physiology and biotechnology of the yeast Kluyveromyces lactis. Yeast 30(5):165–177. doi: 10.1002/yea.2954 CrossRefPubMedGoogle Scholar
  35. Silveira WB, Passos FJV, Mantovani HC, Passos FML (2005) Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: a flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzym Microb Technol 36(7):930–936. doi: 10.1016/j.enzmictec.2005.01.018 CrossRefGoogle Scholar
  36. Silveira WB, Diniz RHS, Cerdán ME, González-Siso MI, Souza RA, Vidigal PM, Brustolini OJ, Almeida Prata ER, Medeiros AC, Paiva LC, Nascimento M, Ferreira EG, Dos Santos VC, Bragança CR, Fernandes TA, Colombo LT, Passos FM (2014) Genomic sequence of the yeast Kluyveromyces marxianus CCT 7735 (UFV-3), a highly lactose-fermenting yeast isolated from the Brazilian dairy industry. Genome Announc 2(6):e01136–e01114. doi: 10.1128/genomeA.01136-14 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Souza C, Costa D, Rodrigues M, Santos A, Lopes M, Abrantes A, Costa P, Silveira W, Passos F, Fietto L (2012) The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse. Bioresour Technol 109:63–69. doi: 10.1016/j.biortech.2012.01.024 CrossRefPubMedGoogle Scholar
  38. Stanley D, Bandara A, Fraser S, Chambers P, Stanley G (2010) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109:13–24. doi: 10.1111/j.1365-2672.2009.04657.x PubMedGoogle Scholar
  39. Teixeira M, Raposo L, Mira N, Lourenço A, Sá-Correia I (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75(18):5761–5772. doi: 10.1128/AEM.00845-09 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Uemura H (2012) Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Appl Microbiol Biotechnol 95(1):1–12. doi: 10.1007/s00253-012-4105-1 CrossRefPubMedGoogle Scholar
  41. Vanegas JM, Contreras MF, Faller R, Longo ML (2012) Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys J 102(3):507–516. doi: 10.1016/j.bpj.2011.12.038 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Väremo L, Nielsen J, Nookaew I (2013) Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res 41(8):4378–4391. doi: 10.1093/nar/gkt111 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Voordeckers K, Kominek J, Das A, Espinosa-Cantú A, Maeyer D, Arslan A, Pee M, van der Zande E, Meert W, Yang Y, Zhu B, Marchal K, DeLuna A, Van Noort V, Jelier R, Verstrepen KJ (2015) Adaptation to high ethanol reveals complex evolutionary pathways. PLoS Genet 11(11):e1005635. doi: 10.1371/journal.pgen.1005635 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zheng DQ, Liu TZ, Chen J, Zhang K, Li O, Zhu L, Zhao YH, Wu XC, Wang PM (2013) Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains. Appl Microbiol Biotechnol 97(5):2067–2076. doi: 10.1007/s00253-013-4698-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Raphael Hermano Santos Diniz
    • 1
  • Juan C. Villada
    • 1
  • Mariana Caroline Tocantins Alvim
    • 1
  • Pedro Marcus Pereira Vidigal
    • 2
  • Nívea Moreira Vieira
    • 1
    • 2
  • Mónica Lamas-Maceiras
    • 3
  • María Esperanza Cerdán
    • 3
  • María-Isabel González-Siso
    • 3
  • Petri-Jaan Lahtvee
    • 4
  • Wendel Batista da Silveira
    • 1
    Email author
  1. 1.Laboratory of Microbial Physiology, Department of MicrobiologyUniversidade Federal de ViçosaVicosaBrazil
  2. 2.Center for Analysis of Biomolecules, Center for Biological and Health SciencesUniversidade Federal de ViçosaVicosaBrazil
  3. 3.Exprela Research Group, Facultade de Ciencias and CICA (Centro de Investigacións Científicas Avanzadas)Universidade da CoruñaA CoruñaSpain
  4. 4.Institute of TechnologyUniversity of TartuTartuEstonia

Personalised recommendations