Applied Microbiology and Biotechnology

, Volume 101, Issue 18, pp 6929–6939 | Cite as

Development of a bifunctional xylanase-cellulase chimera with enhanced activity on rice and barley straws using a modular xylanase and an endoglucanase procured from camel rumen metagenome

  • Kamran Khalili Ghadikolaei
  • Kambiz Akbari Noghabi
  • Hossein Shahbani Zahiri
Biotechnologically Relevant Enzymes and Proteins


The camel rumen metagenome is an untapped source of glycoside hydrolases. In this study, novel genes encoding for a modular xylanase (XylC) and a cellulase (CelC) were isolated from a camel rumen metagenome and expressed in Escherichia coli BL21 (DE3). XylC with xylanase (Xyn), CBM, and carbohydrate esterase (CE) domains was characterized as a β-1,4-endoxylanase with remarkable catalytic activity on oat-spelt xylan (K cat = 2919 ± 57 s−1). The implication of XylC’s modular structure in its high catalytic activity was analyzed by truncation and fusion construction with CelC. The resulting fusions including Cel-CBM, Cel-CBM-CE, and Xyn-CBM-Cel showed remarkable enhancement in CMCase activity with K cat values of 742 ± 12, 1289 ± 34.5, and 2799 ± 51 s−1 compared to CelC with a K cat of 422 ± 3.5 s−1. It was also shown that the bifunctional Xyn-CBM-Cel with synergistic xylanase/cellulase activities was more efficient than XylC and CelC in hydrolysis of rice and barley straws.


Xylanase Cellulase Fusion protein Metagenome Protein engineering 



This work was supported by National Institute of Genetic Engineering and Biotechnology (NIGEB) (Grant Nos. 518 and 578).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7(2):163–173CrossRefGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254CrossRefPubMedGoogle Scholar
  3. Chang L, Ding M, Bao L, Chen Y, Zhou J, Lu H (2011) Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. Appl Microbiol Biotechnol 90(6):1933–1942CrossRefPubMedGoogle Scholar
  4. Collins T, Meuwis M-A, Stals I, Claeyssens M, Feller G, Gerday C (2002) A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem 277(38):35133–35139CrossRefPubMedGoogle Scholar
  5. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23CrossRefPubMedGoogle Scholar
  6. Gangwar AK, Prakash NT, Prakash R (2014) Applicability of microbial xylanases in paper pulp bleaching: a review. Bioresources 9(2):3733–3754CrossRefGoogle Scholar
  7. Gharechahi J, Zahiri HS, Noghabi KA, Salekdeh GH (2015) In-depth diversity analysis of the bacterial community resident in the camel rumen. Syst Appl Microbiol 38(1):67–76CrossRefPubMedGoogle Scholar
  8. Ghatge SS, Telke AA, Kang S-H, Arulalapperumal V, Lee K-W, Govindwar SP, Um Y, Oh D-B, Shin H-D, Kim S-W (2014) Characterization of modular bifunctional processive endoglucanase Cel5 from Hahella chejuensis KCTC 2396. Appl Microbiol Biotechnol 98(10):4421–4435CrossRefPubMedGoogle Scholar
  9. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800CrossRefPubMedGoogle Scholar
  10. Golan AE (2010) Cellulase: types and action, mechanism, and uses. Nova Science Publishers, New YorkGoogle Scholar
  11. Goncalves GA, Takasugi Y, Jia L, Mori Y, Noda S, Tanaka T, Ichinose H, Kamiya N (2015) Synergistic effect and application of xylanases as accessory enzymes to enhance the hydrolysis of pretreated bagasse. Enzym Microb Technol 72:16–24CrossRefGoogle Scholar
  12. Henshaw JL, Bolam DN, Pires VM, Czjzek M, Henrissat B, Ferreira LM, Fontes CM, Gilbert HJ (2004) The family 6 carbohydrate binding module CmCBM6-2 contains two ligand-binding sites with distinct specificities. J Biol Chem 279(20):21552–21559CrossRefPubMedGoogle Scholar
  13. Hong SY, Lee JS, Cho KM, Math RK, Kim YH, Hong SJ, Cho YU, Kim H, Yun HD (2006) Assembling a novel bifunctional cellulase–xylanase from Thermotoga maritima by end-to-end fusion. Biotechnol Lett 28(22):1857–1862CrossRefPubMedGoogle Scholar
  14. Hong S-Y, Lee J-S, Cho K-M, Math RK, Kim Y-H, Hong S-J, Cho Y-U, Cho S-J, Kim H, Yun H-D (2007) Construction of the bifunctional enzyme cellulase-β-glucosidase from the hyperthermophilic bacterium Thermotoga maritima. Biotechnol Lett 29(6):931–936CrossRefPubMedGoogle Scholar
  15. Jemli S, Ayadi-Zouari D, Hlima HB, Bejar S (2016) Biocatalysts: application and engineering for industrial purposes. Crit Rev Biotechnol 36(2):246–258CrossRefPubMedGoogle Scholar
  16. JoBoyce A, Walsh G (2015) Characterisation of a novel thermostable endoglucanase from Alicyclobacillus vulcanalis of potential application in bioethanol production. Appl Microbiol Biotechnol 99(18):7515–7525CrossRefGoogle Scholar
  17. Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–203CrossRefGoogle Scholar
  18. Knowles J, Lehtovaara P, Teeri T (1987) Cellulase families and their genes. Trends Biotechnol 5(9):255–261CrossRefGoogle Scholar
  19. Kosugi A, Murashima K, Doi RH (2002) Xylanase and acetyl xylan esterase activities of XynA, a key subunit of the Clostridium cellulovorans cellulosome for xylan degradation. Appl Environ Microbiol 68(12):6399–6402CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874CrossRefPubMedGoogle Scholar
  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685CrossRefPubMedGoogle Scholar
  22. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467CrossRefGoogle Scholar
  23. Liu X, Huang Z, Zhang X, Shao Z, Liu Z (2014) Cloning, expression and characterization of a novel cold-active and halophilic xylanase from Zunongwangia profunda. Extremophiles 18(2):441–450CrossRefPubMedGoogle Scholar
  24. Liu Y, Huang L, Li W, Guo W, Zheng H, Wang J, Lu F (2015) Studies on properties of the xylan-binding domain and linker sequence of xylanase XynG1-1 from Paenibacillus campinasensis G1-1. J Ind Microbiol Biotechnol 42(12):1591–1599CrossRefPubMedGoogle Scholar
  25. Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4(2):91–98CrossRefPubMedGoogle Scholar
  26. Mert MJ, la Grange DC, Rose SH, van Zyl WH (2016) Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase. J Ind Microbiol Biotechnol 43(4):431–440CrossRefPubMedGoogle Scholar
  27. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428CrossRefGoogle Scholar
  28. Pai C-K, Wu Z-Y, Chen M-J, Zeng Y-F, Chen J-W, Duan C-H, Li M-L, Liu J-R (2010) Molecular cloning and characterization of a bifunctional xylanolytic enzyme from Neocallimastix patriciarum. Appl Microbiol Biotechnol 85(5):1451–1462CrossRefPubMedGoogle Scholar
  29. Rashamuse K, Visser D, Hennessy F, Kemp J, Roux-van der Merwe M, Badenhorst J, Ronneburg T, Francis-Pope R, Brady D (2013) Characterisation of two bifunctional cellulase–xylanase enzymes isolated from a bovine rumen metagenome library. Curr Microbiol 66(2):145–151CrossRefPubMedGoogle Scholar
  30. Rizk M, Elleuche S, Antranikian G (2015) Generating bifunctional fusion enzymes composed of heat-active endoglucanase (Cel5A) and endoxylanase (XylT). Biotechnol Lett 37(1):139–145CrossRefPubMedGoogle Scholar
  31. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433CrossRefPubMedGoogle Scholar
  32. Sun J, Wang H, Lv W, Ma C, Lou Z, Dai Y (2011) Construction and characterization of a fusion β-1, 3-1, 4-glucanase to improve hydrolytic activity and thermostability. Biotechnol Lett 33(11):2193CrossRefPubMedGoogle Scholar
  33. Thomas L, Parameswaran B, Pandey A (2016) Hydrolysis of pretreated rice straw by an enzyme cocktail comprising acidic xylanase from Aspergillus sp. for bioethanol production. Renew Energy 98:9–15CrossRefGoogle Scholar
  34. Van Den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6(3):213–218CrossRefPubMedGoogle Scholar
  35. Van Dyk J, Pletschke B (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480CrossRefPubMedGoogle Scholar
  36. Van Soest P (2006) Rice straw, the role of silica and treatments to improve quality. Anim Feed Sci Technol 130(3):137–171CrossRefGoogle Scholar
  37. Wejse PL, Ingvorsen K, Mortensen KK (2003) Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium. Extremophiles 7(5):423–431CrossRefPubMedGoogle Scholar
  38. Yang H, Liu L, Xu F (2016) The promises and challenges of fusion constructs in protein biochemistry and enzymology. Appl Microbiol Biotechnol 100(19):8273–8281CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Kamran Khalili Ghadikolaei
    • 1
  • Kambiz Akbari Noghabi
    • 1
  • Hossein Shahbani Zahiri
    • 1
  1. 1.Department of Energy and Environmental BiotechnologyNational Institute of Genetic Engineering and Biotechnology (NIGEB)TehranIran

Personalised recommendations