Skip to main content
Log in

Extracellular electron transfer in acetogenic bacteria and its application for conversion of carbon dioxide into organic compounds

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Acetogenic bacteria (i.e., acetogens) produce acetate from CO2 during anaerobic chemoautotrophic growth. Because acetogens fix CO2 with high energy efficiency, they have been investigated as biocatalysts of CO2 conversion into valuable chemicals. Recent studies revealed that some acetogens are capable of extracellular electron transfer (EET), which enables electron exchange between microbial cells and extracellular solid materials. Thus, acetogens are promising candidates as biocatalysts in recently developed bioelectrochemical technologies, including microbial electrosynthesis (MES), in which useful chemicals are biologically produced from CO2 using electricity as the energy source. In microbial photoelectrosynthesis, a variant of MES technology, the conversion of CO2 into organic compounds is achieved using light as the sole energy source without an external power supply. In this mini-review, we introduce the general features of bioproduction and EET of acetogens and describe recent progress and future prospects of MES technologies based on the EET capability of acetogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abubackar HN, Veiga MC, Kennes C (2015) Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour Technol 186:122–127

    Article  CAS  PubMed  Google Scholar 

  • Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723

    Article  CAS  PubMed  Google Scholar 

  • Bajracharya S, Vanbroekhoven K, Buisman CJN, Pant D, Strik DPBTB (2016) Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide. Environ Sci Pollut Res Int 23:22292–22308

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Leang C, Ueki T, Nevin KP, Lovley DR (2014) Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl Environ Microbiol 80:2410–2416

    Article  PubMed  PubMed Central  Google Scholar 

  • Bar-Even A, Noor E, Milo R (2012) A survey of carbon fixation pathways through a quantitative lens. J Exp Bot 63:2325–2342

    Article  CAS  PubMed  Google Scholar 

  • Berg IA, Kockelkorn D, Ramos-Vera WH, Say SF, Zarzycki J, Hugler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460

    Article  CAS  PubMed  Google Scholar 

  • de Campos RT, Rosenbaum MA (2014) Microbial electroreduction: screening for new cathodic biocatalysts. ChemElectroChem 1:1916–1922

    Article  Google Scholar 

  • Chen L, Tremblay P-L, Mohanty S, Xu K, Zhang T (2016) Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide-tetraethylene pentamine. J Mater Chem A 4:8395–8401

    Article  CAS  Google Scholar 

  • Choi O, Sang BI (2016) Extracellular electron transfer from cathode to microbes: application for biofuel production. Biotechnol Biofuels 9:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Coman V, Gustavsson T, Finkelsteinas A, von Wachenfeldt C, Hägerhäll C, Gorton L (2009) Electrical wiring of live, metabolically enhanced Bacillus subtilis cells with flexible osmium-redox polymers. J Am Chem Soc 131:16171–16176

    Article  CAS  PubMed  Google Scholar 

  • Daniell J, Kӧpke M, Simpson SD (2012) Commercial biomass syngas fermentation. Energies 5:5372–5417

    Article  CAS  Google Scholar 

  • Deutzmann JS, Sahin M, Spormann AM (2015) Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. MBio 6:e00496-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Drake HL, Gössner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100–128

    Article  CAS  PubMed  Google Scholar 

  • Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35:63–72

    Article  PubMed  Google Scholar 

  • Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631–658

    Article  CAS  PubMed  Google Scholar 

  • Ganigué R, Puig S, Batlle-Vilanova P, Balaguer MD, Colprim J (2015) Microbial electrosynthesis of butyrate from carbon dioxide. Chem Commun 51:3235–3238

    Article  Google Scholar 

  • Genthner BRS, Bryant MP (1982) Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl Environ Microbiol 43:70–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giddings CG, Nevin KP, Woodward T, Lovley DR, Butler CS (2015) Simplifying microbial electrosynthesis reactor design. Front Microbiol 6:468

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Ebrahim A, Feist AM, Embree M, Zhang T, Lovley D, Zengler K (2013) Sulfide-driven microbial electrosynthesis. Environ Sci Technol 47:568–573

    Article  CAS  PubMed  Google Scholar 

  • Hongo M, Iwahara M (1979) Electrochemical studies on fermentation. I. Application of electro-energizing method to L-glutamic acid fermentation. Agric Biol Chem 43:2075–2081

    CAS  Google Scholar 

  • Jeon BY, Jung IL, Park DH (2012) Conversion of carbon dioxide to metabolites by Clostridium acetobutylicum KCTC1037 cultivated with electrochemical reducing power. Adv Microbiol 2:332–339

    Article  Google Scholar 

  • Jourdin L, Lu Y, Flexer V, Keller J, Freguia S (2016) Biologically-induced hydrogen production drives high rate / high efficiency microbial electrosynthesis of acetate from carbon dioxide. ChemElectroChem 3:581–591

    Article  CAS  Google Scholar 

  • Kaneko M, Ishikawa M, Song J, Kato S, Hashimoto K, Nakanishi S (2017) Cathodic supply of electrons to living microbial cells via cytocompatible redox-active polymers. Electrochem Commun 75:17–20

    Article  CAS  Google Scholar 

  • Kato S (2015) Biotechnological aspects of microbial extracellular electron transfer. Microbes Environ 30:133–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato S (2016) Microbial extracellular electron transfer and its relevance to iron corrosion. Microb Biotechnol 9:141–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato S, Yumoto I, Kamagata Y (2015) Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl Environ Microbiol 81:67–73

    Article  PubMed  Google Scholar 

  • Kim TS, Kim BH (1988) Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent. Biotechnol Lett 10:123–128

    Article  CAS  Google Scholar 

  • Klasson KT, Ackerson MD, Clausen EC, Gaddy JL (1992) Bioconversion of synthesis gas into liquid or gaseous fuels. Enzym Microb Technol 14:602–608

    Article  CAS  Google Scholar 

  • Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107:13087–13092

    Article  PubMed  PubMed Central  Google Scholar 

  • Kornienko N, Sakimoto KK, Herlihy DM, Nguyen SC, Alivisatos AP, Harris CB, Schwartzberg A, Yang P (2016) Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production. Proc Natl Acad Sci U S A 113:11750–11755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leang C, Ueki T, Nevin KP, Lovley DR (2013) A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 79:1102–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596

    Article  CAS  PubMed  Google Scholar 

  • Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M (2016) Gas fermentation—a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front Microbiol 7:694

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Gallagher JJ, Sakimoto KK, Nichols EM, Chang CJ, Chang MCY, Yang P (2015) Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett 15:3634–3639

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Colón BC, Ziesack M, Silver PA, Nocera DG (2016) Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Ljungdahl LG (2009) A life with acetogens, thermophiles, and cellulolytic anaerobes. Annu Rev Microbiol 63:1–25

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 24:385–390

    Article  CAS  PubMed  Google Scholar 

  • Lu A, Li Y, Jin S, Wang X, Wu XL, Zeng C, Li Y, Ding H, Hao R, Lv M, Wang C, Tang Y, Dong H (2012) Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat Commun 3:768

    Article  PubMed  Google Scholar 

  • Mand J, Park HS, Jack TR, Voordouw G (2014) The role of acetogens in microbially influenced corrosion of steel. Front Microbiol 5:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2012) Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol 78:8412–8420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2013) Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol 47:6023–6029

    Article  CAS  PubMed  Google Scholar 

  • Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105:3968–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May HD, Evans PJ, LaBelle EV (2016) The bioelectrosynthesis of acetate. Curr Opin Biotechnol 42:225–233

    Article  CAS  PubMed  Google Scholar 

  • Mohanakrishna G, Seelam JS, Vanbroekhoven K, Pant D (2015) An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction. Faraday Discuss 183:445–462

    Article  CAS  PubMed  Google Scholar 

  • Nagaraju S, Davies NK, Walker DJ, Köpke M, Simpson SD (2016) Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol Biofuels 9:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1:e00103-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77:2882–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie H, Zhang T, Cui M, Lu H, Lovley DR, Russell TP (2013) Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys Chem Chem Phys 15:14290–14294

    Article  CAS  PubMed  Google Scholar 

  • Nishio K, Nakamura R, Lin X, Konno T, Ishihara K, Nakanishi S, Hashimoto K (2013) Extracellular electron transfer across bacterial cell membranes via a cytocompatible redox-active polymer. Chem Phys Chem 14:2159–2163

    Article  CAS  PubMed  Google Scholar 

  • Nybo SE, Khan NE, Woolston BM, Curtis WR (2015) Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals. Metab Eng 30:105–120

    Article  CAS  PubMed  Google Scholar 

  • Peguin S, Delorme P, Goma G, Soucaille P (1994) Enhanced alcohol yields in batch cultures of Clostridium acetobutylicum using a three-electrode potentiometric system with methyl viologen as electron carrier. Biotechnol Lett 16:269–274

    Article  CAS  Google Scholar 

  • Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY (2014) Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci U S A 111:12883–12888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramió-Pujol S, Ganiguẽ R, Bañeras L, Colprim J (2015) Incubation at 25 °C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7. Bioresour Technol 192:296–303

    Article  PubMed  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Schicklberger M, Gescher J (2012) Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78:913–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roger I, Shipman MA, Symes MD (2017) Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem 1:0003

    Article  Google Scholar 

  • Rosenbaum MA, Henrich AW (2014) Engineering microbial electrocatalysis for chemical and fuel production. Curr Opin Biotechnol 29:93–98

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102:324–333

    Article  CAS  PubMed  Google Scholar 

  • Sakimoto KK, Wong AB, Yang P (2016a) Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351:74–77

    Article  CAS  PubMed  Google Scholar 

  • Sakimoto KK, Zhang SJ, Yang P (2016b) Cysteine-cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2 by a tandem inorganic-biological hybrid system. Nano Lett 16:5883–5887

    Article  CAS  PubMed  Google Scholar 

  • Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586:2191–2198

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu HQ, Fredrickson JK (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14:651–662

    Article  CAS  PubMed  Google Scholar 

  • Song J, Kim Y, Lim M, Lee H, Lee JI, Shin W (2011) Microbes as electrochemical CO2 conversion catalysts. ChemSusChem 4:587–590

    Article  CAS  PubMed  Google Scholar 

  • Steinbusch KJ, Hamelers HVM, Plugge CM, Buisman CJN (2011) Biological formation of caproate and caprylate from acetate: fuel and chemicals from low grade biomass. Energy Environ Sci 4:216–224

    Article  CAS  Google Scholar 

  • Thrash JC, Coates JD (2008) Review: direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol 42:3921–3931

    Article  CAS  PubMed  Google Scholar 

  • Torella JP, Gagliardi CJ, Chen JS, Bediako DK, Colón B, Way JC, Silver PA, Nocera DG (2015) Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc Natl Acad Sci U S A 112:2337–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay PL, Zhang T (2015) Electrifying microbes for the production of chemicals. Front Microbiol 6:201

    PubMed  PubMed Central  Google Scholar 

  • Tremblay PL, Höglund D, Koza A, Bonde I, Zhang T (2015) Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products. Sci Rep 5:16168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay PL, Angenent LT, Zhang T (2016) Extracellular electron uptake: among autotrophs and mediated by surfaces. Trends Biotechnol 35:360–371

    Article  PubMed  Google Scholar 

  • Ueki T, Nevin KP, Woodard TL, Lovley DR (2014) Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. MBio 5:e01636-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Eerten-Jansen MCAA, Ter Heijne A, Grootscholten TIM, Steinbusch KJJ, Sleutels THJA, Hamelers HVM, Buisman CJN (2013) Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures. ACS Sustain Chem Eng 1:513–518

    Article  Google Scholar 

  • Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu T, Zhuang L (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7:3135–3191

    Article  CAS  Google Scholar 

  • Watanabe K, Manefield M, Lee M, Kouzuma A (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol 20:633–641

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Nie H, Bain TS, Lu H, Cui M, Snoeyenbos-West OL, Franks AE, Nevin KP, Russell TP, Lovley DR (2013) Improved cathode materials for microbial electrosynthesis. Energy Environ Sci 6:217–224

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Japan Society for the Promotion of Science KAKENHI grants (nos. JP16K14895 and JP15H01071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souichiro Kato.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igarashi, K., Kato, S. Extracellular electron transfer in acetogenic bacteria and its application for conversion of carbon dioxide into organic compounds. Appl Microbiol Biotechnol 101, 6301–6307 (2017). https://doi.org/10.1007/s00253-017-8421-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8421-3

Keywords

Navigation