Applied Microbiology and Biotechnology

, Volume 101, Issue 18, pp 6899–6905 | Cite as

Production of ω3 fatty acids in marine cyanobacterium Synechococcus sp. strain NKBG 15041c via genetic engineering

  • Tomoko Yoshino
  • Natsumi Kakunaka
  • Yue Liang
  • Yasuhito Ito
  • Yoshiaki Maeda
  • Tatsuhiro Nomaguchi
  • Tadashi Matsunaga
  • Tsuyoshi TanakaEmail author
Biotechnological products and process engineering


Omega-3 fatty acids (ω3 FAs) have attracted attention because they have various health benefits for humans. Fish oils are currently major sources of ω3 FAs, but a sustainable supply of ω3 FAs based on fish oils is problematic because of the increasing demand. In this study, the production potential of a genetically engineered marine cyanobacterium, Synechococcus sp. strain NKBG 15041c, was examined as an alternative source of ω3 FAs. A change in fatty acid composition of this cyanobacterium was successfully induced by the expression of a heterologous Δ6-desaturase, and the transformants synthesized stearidonic acid, which the wild type cannot produce. As a result of optimization of culture conditions, maximal contents of stearidonic acid and total ω3 FAs reached 12.2 ± 2.4 and 118.1 ± 3.5 mg/g, respectively. The maximal ω3 FA productivity was 4.6 ± 0.7 mg/(L⋅day). These are the highest values of the contents of stearidonic acid and ω3 FAs in genetically engineered cyanobacteria reported thus far. Therefore, genetically engineered Synechococcus sp. strain NKBG 15041c may be a promising sustainable source of ω3 fatty acids.


Cyanobacterium Omega-3 (ω3) fatty acids Genetic engineering Delta-6 (Δ6) desaturase 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

253_2017_8407_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1086 kb)


  1. Atalah E, Cruz CH, Izquierdo M, Rosenlund G, Caballero M, Valencia A, Robaina L (2007) Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquaculture 270(1):178–185CrossRefGoogle Scholar
  2. Barcelo-Coblijn G, Murphy EJ (2009) Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res 48(6):355–374. doi: 10.1016/j.plipres.2009.07.002 PubMedCrossRefGoogle Scholar
  3. Brenna JT, Salem N Jr, Sinclair AJ, Cunnane SC (2009) Alpha-linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids 80(2–3):85–91. doi: 10.1016/j.plefa.2009.01.004 PubMedCrossRefGoogle Scholar
  4. Cerón Garcí M, Fernández Sevilla J, Acien Fernandez F, Molina Grima E, García Camacho F (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J Appl Phycol 12(3):239–248CrossRefGoogle Scholar
  5. Chen G, Qu S, Wang Q, Bian F, Peng Z, Zhang Y, Ge H, Yu J, Xuan N, Bi Y, He Q (2014) Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803. Biotechnol Biofuels 7(1):32 doi: 10.1186/1754-6834-7-32
  6. Cohen Z, Ratledge C (2010) Single cell oils: microbial and algal oils. ElsevierGoogle Scholar
  7. Deckelbaum RJ, Torrejon C (2012) The omega-3 fatty acid nutritional landscape: health benefits and sources. J Nutr 142(3):587S–591S. doi: 10.3945/jn.111.148080 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Dong X, He Q, Peng Z, Yu J, Bian F, Li Y, Bi Y (2015) Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes. Chin J Oceanol Limnol 34(4):772–780. doi: 10.1007/s00343-016-4369-x CrossRefGoogle Scholar
  9. Ganuza E, Benítez-Santana T, Atalah E, Vega-Orellana O, Ganga R, Izquierdo M (2008) Crypthecodinium cohnii and Schizochytrium sp. as potential substitutes to fisheries-derived oils from seabream (Sparus aurata) microdiets. Aquaculture 277(1):109–116CrossRefGoogle Scholar
  10. Gombos Z, Kanervo E, Tsvetkova N, Sakamoto T, Aro EM, Murata N (1997) Genetic enhancement of the ability to tolerate photoinhibition by introduction of unsaturated bonds into membrane glycerolipids. Plant Physiol 115(2):551–559PubMedPubMedCentralCrossRefGoogle Scholar
  11. Gombos Z, Wada H, Murata N (1992) Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc Natl Acad Sci U S A 89(20):9959–9963PubMedPubMedCentralCrossRefGoogle Scholar
  12. Gonzalez-Periz A, Horrillo R, Ferre N, Gronert K, Dong B, Moran-Salvador E, Titos E, Martinez-Clemente M, Lopez-Parra M, Arroyo V, Claria J (2009) Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J 23(6):1946–1957. doi: 10.1096/fj.08-125674 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Guedes AC, Amaro HM, Barbosa CR, Pereira RD, Malcata FX (2011a) Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Res Int 44(9):2721–2729CrossRefGoogle Scholar
  14. Guedes AC, Amaro HM, Barbosa CR, Pereira RD, Malcata FX (2011b) Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Res Int 44(9):2721–2729CrossRefGoogle Scholar
  15. Haimeur A, Ulmann L, Mimouni V, Gueno F, Pineau-Vincent F, Meskini N, Tremblin G (2012) The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats. Lipids Health Dis 11:147. doi: 10.1186/1476-511x-11-147 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Heydarizadeh P, Poirier I, Loizeau D, Ulmann L, Mimouni V, Schoefs B, Bertrand M (2013) Plastids of marine phytoplankton produce bioactive pigments and lipids. Mar Drugs 11(9):3425–3471. doi: 10.3390/md11093425 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13(4):793–806PubMedPubMedCentralCrossRefGoogle Scholar
  18. Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38(8):2577–2593PubMedPubMedCentralCrossRefGoogle Scholar
  19. Kenyon CN (1972) Fatty acid composition of unicellular strains of blue-green algae. J Bacteriol 109(2):827–834PubMedPubMedCentralGoogle Scholar
  20. Kenyon CN, Rippka R, Stanier RY (1972) Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch Mikrobiol 83(3):216–236PubMedCrossRefGoogle Scholar
  21. Kis M, Zsiros O, Farkas T, Wada H, Nagy F, Gombos Z (1998) Light-induced expression of fatty acid desaturase genes. Proc Natl Acad Sci U S A 95(8):4209–4214PubMedPubMedCentralCrossRefGoogle Scholar
  22. Kremmyda L-S, Vlachava M, Noakes PS, Diaper ND, Miles EA, Calder PC (2009) Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: a systematic review. Clin Rev Allergy Immunol 41(1):36–66. doi: 10.1007/s12016-009-8186-2 CrossRefGoogle Scholar
  23. Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A (2004) Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 79(6):935–945PubMedGoogle Scholar
  24. Li-Beisson Y, Beisson F, Riekhof W (2015) Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Plant J 82(3):504–522. doi: 10.1111/tpj.12787 PubMedCrossRefGoogle Scholar
  25. Liang Y, Maeda Y, Sunaga Y, Muto M, Matsumoto M, Yoshino T, Tanaka T (2013) Biosynthesis of polyunsaturated fatty acids in the oleaginous marine diatom Fistulifera sp strain JPCC DA0580. Mar Drugs 11(12):5008–5023. doi: 10.3390/md11125008 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Liu X, Sheng J, Curtiss R 3rd (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108(17):6899–6904. doi: 10.1073/pnas.1103014108 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Los D, Mironov K (2015) Modes of fatty acid desaturation in cyanobacteria: an update. Life 5(1):554–567. doi: 10.3390/life5010554 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Los DA, Mironov KS, Allakhverdiev SI (2013) Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth Res 116(2–3):489–509. doi: 10.1007/s11120-013-9823-4 PubMedCrossRefGoogle Scholar
  29. Ludwig M, Bryant DA (2011) Transcription profiling of the model cyanobacterium Synechococcus sp. strain PCC 7002 by next-gen (SOLiD) sequencing of cDNA. Front Microbiol 2:41 doi: 10.3389/fmicb.2011.00041
  30. Maeda Y, Ito Y, Honda T, Yoshino T, Tanaka T (2014) Inducible expression system for the marine cyanobacterium Synechococcus sp. strain NKBG 15041c. Int J Hydrog Energy 39(33):19382–19388CrossRefGoogle Scholar
  31. Miller MR, Nichols PD, Carter CG (2007) Replacement of fish oil with thraustochytrid Schizochytrium sp. L oil in Atlantic salmon parr (Salmo salar L) diets. Comp Biochem Physiol A Mol Integr Physiol 148(2):382–392PubMedCrossRefGoogle Scholar
  32. Morowvat MH, Ghasemi Y (2016) Screening of some naturally isolated microalgal strains for polyunsaturated fatty acids production. Asian J Pharmaceut Res Health Care 8(4):122 doi:10.18311/ajprhc/2016/6113
  33. Murata N, Wada H, Gombos Z (1992) Modes of fatty acid desaturation in cyanobacteria. Plant Cell Physiol 33(7):933–941Google Scholar
  34. Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43(35):11321–11330. doi: 10.1021/bi036178q PubMedCrossRefGoogle Scholar
  35. Pakrasi HB, Moon TS, Maranas CD, Immethun CM, Saha R, Berla BM (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 4. doi: 10.3389/fmicb.2013.00246
  36. Ruffing AM (2011) Engineered cyanobacteria: teaching an old bug new tricks. Bioeng Bugs 2(3):136–149PubMedCrossRefGoogle Scholar
  37. Sakamoto T, Higashi S, Wada H, Murata N, Bryant DA (1997) Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002. FEMS Microbiol Lett 152(2):313–320PubMedCrossRefGoogle Scholar
  38. Sarcina M, Murata N, Tobin MJ, Mullineaux CW (2003) Lipid diffusion in the thylakoid membranes of the cyanobacterium Synechococcus sp.: effect of fatty acid desaturation. FEBS Lett 553(3):295–298PubMedCrossRefGoogle Scholar
  39. Sato N, Murata N (1981) Studies on the temperature shift-induced desaturation of fatty acids in monogalactosyl diacylglycerol in the blue-green alga (cyanobacterium), Anabaena variabilis. Plant Cell Physiol 22(6):1043–1050Google Scholar
  40. Sode K, Tatara M, Hatano N, Matsunaga T (1994) Foreign gene-expression in marine cyanobacteria under pseudocontinuous culture. J Biotechnol 33(3):243-248 doi:Doi  10.1016/0168-1656(94)90072-8
  41. Sode K, Tatara M, Takeyama H, Burgess JG, Matsunaga T (1992) Conjugative gene transfer in marine cyanobacteria: Synechococcus sp., Synechocystis sp. and Pseudanabaena sp. Appl Microbiol Biotechnol 37(3):369–373PubMedCrossRefGoogle Scholar
  42. Su G, Jiao K, Li Z, Guo X, Chang J, Ndikubwimana T, Sun Y, Zeng X, Lu Y, Lin L (2016) Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum. Bioprocess Biosyst Eng 39(7):1129–1136. doi: 10.1007/s00449-016-1589-6 PubMedCrossRefGoogle Scholar
  43. Suresh Y, Das UN (2003) Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus. Nutrition 19(3):213–228. doi: 10.1016/s0899-9007(02)00855-9 PubMedCrossRefGoogle Scholar
  44. Tacon AG, Hasan MR, Metian M (2011) Demand and supply of feed ingredients for farmed fish and crustaceans: trends and prospects. Food and Agriculture Organization of the United NationsGoogle Scholar
  45. Turchini GM, Torstensen BE, Ng WK (2009) Fish oil replacement in finfish nutrition. Rev Aquac 1(1):10–57CrossRefGoogle Scholar
  46. Whelan J (2009) Dietary stearidonic acid is a long chain (n-3) polyunsaturated fatty acid with potential health benefits. J Nutr 139(1):5–10. doi: 10.3945/jn.108.094268 PubMedCrossRefGoogle Scholar
  47. Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57(2):419–425PubMedPubMedCentralGoogle Scholar
  48. Yoshino T, Honda T, Tanaka M, Tanaka T (2013) Draft genome sequence of marine cyanobacterium Synechococcus sp. strain NKBG15041c. Genome Announc 1(6):e00954-13-e00954-13 doi: 10.1128/genomeA.00954-13
  49. Yoshino T, Liang Y, Arai D, Maeda Y, Honda T, Muto M, Kakunaka N, Tanaka T (2014) Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway. Appl Microbiol Biotechnol 99(3):1521–1529. doi: 10.1007/s00253-014-6286-2 PubMedCrossRefGoogle Scholar
  50. Yu R, Yamada A, Watanabe K, Yazawa K, Takeyama H, Matsunaga T, Kurane R (2000) Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp. Lipids 35(10):1061–1064PubMedCrossRefGoogle Scholar
  51. Zhu B-H, Tu C-C, Shi H-P, Yang G-P, Pan K-H (2017) Overexpression of endogenous delta-6 fatty acid desaturase gene enhances eicosapentaenoic acid accumulation in Phaeodactylum tricornutum. Process Biochem. doi: 10.1016/j.procbio.2017.03.013

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Division of Biotechnology and Life Science, Institute of EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
  2. 2.Department of Advanced Science and Engineering, Graduate School of Advanced Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations