Applied Microbiology and Biotechnology

, Volume 101, Issue 16, pp 6447–6457 | Cite as

The gut eukaryotic microbiota influences the growth performance among cohabitating shrimp

  • Wenfang Dai
  • Weina Yu
  • Jinjie Zhang
  • Jinyong Zhu
  • Zhen Tao
  • Jinbo Xiong
Applied genetics and molecular biotechnology


Increasing evidence has revealed a close interplay between the gut bacterial communities and host growth performance. However, until recently, studies generally ignored the contribution of eukaryotes, endobiotic organisms. To fill this gap, we used Illumina sequencing technology on eukaryotic 18S rRNA gene to compare the structures of gut eukaryotic communities among cohabitating retarded, overgrown, and normal shrimp obtained from identically managed ponds. Results showed that a significant difference between gut eukaryotic communities differed significantly between water and intestine and among three shrimp categories. Structural equation modeling revealed that changes in the gut eukaryotic community were positively related to digestive enzyme activities, which in turn influenced shrimp growth performance (λ = 0.97, P < 0.001). Overgrown shrimp exhibited a more complex and cooperative gut eukaryotic interspecies interaction than retarded and normal shrimp, which may facilitate their nutrient acquisition efficiency. Notably, the distribution of dominant eukaryotic genera and shifts in keystone species were closely concordant with shrimp growth performance. In summary, this study provides an integrated overview on direct roles of gut eukaryotic communities in shrimp growth performance instead of well-studied bacterial assembly.


Shrimp growth performance Gut eukaryotic community Structural equation modeling Interspecies interaction 



We appreciate Editor Ursula Kües and the two anonymous reviewers for their constructive comments. This work was supported by the Zhejiang Province Public Welfare Technology Application Research Project (2016C32063), and Education Department (Y201327177), the Project of Science and Technology Department of Ningbo (2017C10044), and the K.C. Wong Magna Fund in Ningbo University.

Compliance with ethical standards

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2017_8388_MOESM1_ESM.pdf (695 kb)
ESM 1 (PDF 694 kb)


  1. Alcock J, Maley CC, Aktipis C (2014) Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36:940–949CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andersen LOB, Nielsen HV, Stensvold CR (2013) Waiting for the human intestinal Eukaryotome. ISME J 7:1253–1255CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arumugam M, Raes J, Pelletier E, Paslier DL, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, Vos WMD, Brunak S, Doré J, Consortium M, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473:174–180CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bailey MT (2012) The contributing role of the intestinal microbiota in stressor-induced increases in susceptibility to enteric infection and systemic immunomodulation. Horm Behav 62:286–294CrossRefPubMedGoogle Scholar
  5. Bennett G, Malone M, Sauther ML, Cuozzo FP, White B, Nelson KE, Stumpf RM, Knight R, Leigh SR, Amato KR (2016) Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am J Primatol 78:883–892CrossRefPubMedGoogle Scholar
  6. Benny GL, Humber RA, Voigt K (2014) Zygomycetous fungi: phylum Entomophthoromycota and subphyla Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina. In: Mclaughlin DJ, Spatafora JW (eds) Systematics and evolution. Springer, Berlin, Part A, pp 209–250CrossRefGoogle Scholar
  7. Caporaso JG, Kuczynski J, Stombaugh J (2010a) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  8. Caporaso JG, Bittinger K, Bushman FD, Desantis TZ, Andersen GL, Knight R (2010b) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267CrossRefPubMedGoogle Scholar
  9. Churchill GA (2004) Using ANOVA to analyze microarray data. Biotechniques 37:173–177Google Scholar
  10. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117–143Google Scholar
  11. Combes S, Fortun-Lamothe L, Cauquil L, Gidenne T (2013) Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal 7:1429–1439Google Scholar
  12. Core Team R (2013) R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna Google Scholar
  13. De Lartigue G, de La Serre CB, Raybould HE (2011) Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav 105:100–105CrossRefPubMedPubMedCentralGoogle Scholar
  14. Deng Y, Jiang YH, Yang Y, He Z, Luo F, Zhou J (2012) Molecular ecological network analyses. BMC Bioinformatics 13:113CrossRefPubMedPubMedCentralGoogle Scholar
  15. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefPubMedGoogle Scholar
  16. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  17. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550CrossRefPubMedGoogle Scholar
  18. Filippo CD, Cavalieri D, Paola MD, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696CrossRefPubMedPubMedCentralGoogle Scholar
  19. Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastro Hepat 9:577–589CrossRefGoogle Scholar
  20. Forberg T, Sjulstad EB, Bakke I, Olsen Y, Hagiwara A, Sakakura Y, Vadstein O (2016) Correlation between microbiota and growth in mangrove killifish (Kryptolebias marmoratus) and Atlantic cod (Gadus morhua). Sci Rep 6:21192CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23CrossRefGoogle Scholar
  22. Heitman J (2011) Microbial pathogens in the fungal kingdom. Fungal Biology Reviews 25:48–60CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hernández-Acosta M, Gutiérrez-Salazar GJ, Guzmán-Sáenz FM, Aguirre-Guzmán G, Alvarez-González CA, Lópezace-Vedo EA, Fitzsimmons K (2016) The effects of Yucca schidigera and Quillaja saponaria on growth performance and enzymes activities of juvenile shrimp Litopenaeus vannamei cultured in low-salinity water. Lat Am J Aquat Res 44:121–128CrossRefGoogle Scholar
  24. Huertas IE, Lubián LM (1998) Comparative study of dissolved inorganic carbon utilization and photosynthetic responses in Nannochloris (Chlorophyceae) and Nannochloropsis (Eustigmatophyceae) species. Can J Bot 76:1104–1108Google Scholar
  25. Knights D, Ward TL, McKinlay CE, Miller H, Gonzalez A, McDonald D (2014) Rethinking “Enterotypes”. Cell Host Microbe 16:433–437CrossRefPubMedGoogle Scholar
  26. Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK (2012) Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 27:201–214CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848CrossRefPubMedGoogle Scholar
  28. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability, and resilience of the human gut microbiota. Nature 489:220–230CrossRefPubMedPubMedCentralGoogle Scholar
  29. Luan C, Xie L, Yang X, Miao H, Lv N, Zhang R, Xiao X, Hu Y, Liu Y, Wu N (2015) Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci Rep 5:7980CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lukeš J, Stensvold CR, Jirkůpomajbíková K, Wegener PL (2015) Are human intestinal eukaryotes beneficial or commensals? PLoS Pathog 11:e1005039CrossRefPubMedPubMedCentralGoogle Scholar
  31. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963CrossRefPubMedPubMedCentralGoogle Scholar
  32. Manian FA, Bryant A (2013) Does Candida species overgrowth protect against Clostridium difficile infection? Clin Infect Dis 56:464–465CrossRefPubMedGoogle Scholar
  33. Massana R, Logares R (2013) Eukaryotic versus prokaryotic marine picoplankton ecology. Environ Microbiol 15:1254–1261CrossRefPubMedGoogle Scholar
  34. Mej N (2003) The structure and function of complex networks. SIAM Rev 45:40–45Google Scholar
  35. Mélida H, Sain D, Stajich JE, Bulone V (2015) Deciphering the uniqueness of Mucoromycotina cell walls by combining biochemical and phylogenomic approaches. Environ Microbiol 17:1649–1662CrossRefPubMedGoogle Scholar
  36. Montoya JM, Pimm SL, Solé RV (2006) Ecological networks and their fragility. Nature 442:259–264CrossRefPubMedGoogle Scholar
  37. Newell PD, Douglas AE (2013) Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Appl Environ Microb 80:788–796CrossRefGoogle Scholar
  38. Parfrey LW, Walters WA, Knight R (2011) Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front Microbiol 2:153CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pataky Z, Bobbioniharsch E, Hadengue A, Carpentier A, Golay A (2009) Gut microbiota, responsible for our body weight? Rev Med Suisse 5:662–666PubMedGoogle Scholar
  40. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596CrossRefGoogle Scholar
  41. Ramayo-Caldas Y, Mach N, Lepage P, Levenez F, Denis C, Lemonnier G, Leplat JJ, Billon Y, Berri M, Doré J (2016) Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J 10:2973–2977CrossRefPubMedGoogle Scholar
  42. Richards JD, Gong J, De Lange CFM (2005) The gastrointestinal microbiota and its role in monogastric nutrition and health with an emphasis on pigs: current understanding, possible modulations, and new technologies for ecological studies. Can J Anim Sci 85:421–435CrossRefGoogle Scholar
  43. Riva A, Borgo F, Lassandro C, Verduci E, Morace G, Borghi E, Berry D (2017) Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ Microbiol 19:95–105CrossRefPubMedGoogle Scholar
  44. Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:24–29Google Scholar
  45. Rook GAW, Raison CL, Lowry CA (2014) Microbial ‘old friends’, immunoregulation and socioeconomic status. Clin Exp Immunol 177:1–12CrossRefPubMedPubMedCentralGoogle Scholar
  46. Samorì G, Samorì C, Guerrini F, Pistocchi R (2013) Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Water Res 47:791–801CrossRefPubMedGoogle Scholar
  47. Scanlan PD, Stensvold CR, Heilig HGHJ, Vos WMD, O’Toole PW, Cotter PD (2014) The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiol Ecol 90:326–330CrossRefPubMedGoogle Scholar
  48. Sha Y, Liu M, Wang B, Jiang K, Sun G, Wang L (2016) Gut bacterial diversity of farmed sea cucumbers Apostichopus japonicus with different growth rates. Microbiology 85:109–115CrossRefGoogle Scholar
  49. Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, Huber DH, Langenheder S, Lennon JT, Martiny JB (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:417CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sukantak N (2010) Role of gastrointestinal microbiota in fish. Aquacult Rse 41:1553–1573CrossRefGoogle Scholar
  52. Tacon AGJ, Cody JJ, Conquest LD, Divakaran S, Forster IP, Decamp OE (2002) Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquac Nutr 8:121–137CrossRefGoogle Scholar
  53. Takeda I, Tamano K, Yamane N, Ishii T, Ai M, Umemura M, Terai G, Baker SE, Koike H, Machida M (2014) Genome sequence of the Mucoromycotina fungus Umbelopsis isabellina, an effective producer of lipids. Genome Announ 2:e00071–e00014CrossRefGoogle Scholar
  54. Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249CrossRefPubMedGoogle Scholar
  55. Ussar S, Griffin NW, Bezy O, Fujisaka S, Vienberg S, Softic S, Deng L, Bry L, Gordon JI, Kahn CR (2015) Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab 22:516–530CrossRefPubMedPubMedCentralGoogle Scholar
  56. Vannette RL, Fukami T (2014) Historical contingency in species interactions: towards niche-based predictions. Ecol Lett 17:115–124CrossRefPubMedGoogle Scholar
  57. Voudanta E, Kormas KA, Monchy S, Delegrange A, Vincent D, Genitsaris S, Christaki U (2016) Mussel biofiltration effects on attached bacteria and unicellular eukaryotes in fish-rearing seawater. PeerJ 4:e1829CrossRefPubMedPubMedCentralGoogle Scholar
  58. Williams RJ, Howe A, Hofmockel KS (2014) Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front Microbiol 5:358CrossRefPubMedPubMedCentralGoogle Scholar
  59. Witt U, Koske PH, Kuhlmann D, Lenz J, Nellen W (1981) Production of Nannochloris spec. (Chlorophyceae) in large-scale outdoor tanks and its use as a food organism in marine aquaculture. Aquaculture 23:171–181CrossRefGoogle Scholar
  60. Xiong J, Wang K, Wu J, Qiuqian L, Yang K, Qian Y, Zhang D (2015) Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Appl Microbiol Biotechnol 99:6911–6919CrossRefPubMedGoogle Scholar
  61. Xiong J, Dai W, Li C (2016) Advances, challenges, and directions in shrimp disease control: the guidelines from an ecological perspective. Appl Microbiol Biotechnol 100:6947–6954CrossRefPubMedGoogle Scholar
  62. Xiong J, Zhu J, Dai W, Dong C, Qiu Q, Li C (2017a) Integrating gut microbiota immaturity and disease-discriminatory taxa to diagnose the initiation and severity of shrimp disease. Environ Microbiol 19:1490–1501CrossRefPubMedGoogle Scholar
  63. Xiong J, Dai W, Zhu J, Liu K, Dong C, Qiu Q (2017b) The underlying ecological processes of gut microbiota among cohabitating retarded, overgrown and normal shrimp. Microb Ecol 73:988–999CrossRefPubMedGoogle Scholar
  64. Yakoob J, Jafri W, Beg MA, Abbas Z, Naz S, Islam M, Khan R (2010) Blastocystis hominis and Dientamoeba fragilis in patients fulfilling irritable bowel syndrome criteria. Parasitol Res 107:679–684CrossRefPubMedGoogle Scholar
  65. Zhu J, Dai W, Qiu Q, Dong C, Zhang J, Xiong J (2016) Contrasting ecological processes and functional compositions between intestinal bacterial community in healthy and diseased shrimp. Microb Ecol 72:975–985CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Marine SciencesNingbo UniversityNingboChina
  2. 2.Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy AquacultureNingboChina

Personalised recommendations