Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 17, pp 6587–6596 | Cite as

Identification and characterization of EYK1, a key gene for erythritol catabolism in Yarrowia lipolytica

  • F. Carly
  • H. Gamboa-Melendez
  • M. Vandermies
  • C. Damblon
  • J. M. Nicaud
  • P. FickersEmail author
Biotechnological products and process engineering

Abstract

Erythritol is a four-carbon sugar alcohol synthesized by osmophilic yeasts, such as Yarrowia lipolytica, in response to osmotic stress. This metabolite has application as food additive due to its sweetening properties. Although Y. lipolytica can produce erythritol at a high level from glycerol, it is also able to consume it as carbon source. This ability negatively affects erythritol productivity and represents a serious drawback for the development of an efficient erythritol production process. In this study, we have isolated by insertion mutagenesis a Y. lipolytica mutant unable to grow on erythritol. Genomic characterization of the latter highlighted that the mutant phenotype is directly related to the disruption of the YALI0F01606g gene. Several experimental evidences suggested that the identified gene, renamed EYK1, encodes an erythrulose kinase. The mutant strain showed an enhanced capacity to produce erythritol as compared to the wild-type strain. Moreover, in specific experimental conditions, it is also able to convert erythritol to erythrulose, another compound of biotechnological interest.

Keywords

Yarrowia lipolytica Erythritol Erythrulose kinase 

Notes

Acknowledgements

We thank Sandra Pizzut and Sophie Bozonnet at the Integrated Screening Platform of Toulouse (PICT) for screening the mutant library. F. Carly and M. Vandermies are recipients of a fellowship from the Fond pour la Formation à la Recherche dans l’Industrie et l’Agriculture (FRIA).

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2017_8361_MOESM1_ESM.pdf (197 kb)
ESM 1 (PDF 196 kb)

References

  1. Adams RW, Holroyd CM, Aguilar JA, Nilsson M, Morris GA (2013) Perfecting WATERGATE: clean proton NMR spectra from aqueous solution. Chem Com 49:358–360CrossRefGoogle Scholar
  2. Barbier T, Collardb F, Zúñiga-Ripac A, Moriyónc I, Godardd T, Beckere J, Wittmanne C, Van Schaftingenb E, Letesson J (2014) Erythritol feeds the pentose phosphate pathway via three new isomerases leading to d-erythrose-4-phosphate in Brucella. PNAS 50:17815–17820CrossRefGoogle Scholar
  3. Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Nonconventional yeasts in biotechnology. Springer, Berlin, pp 313–388CrossRefGoogle Scholar
  4. Bernt W, Borzelleca J, Flamm G, Munro I (1996) Erythritol: a review of biological and toxicological studies. Regul Toxicol Pharmacol 24:191–197CrossRefGoogle Scholar
  5. Fickers P, Le Dall M-T, Gaillardin C, Thonart P, Nicaud J (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Meth 55:727–737CrossRefGoogle Scholar
  6. Fickers P, Benetti P, Wache Y, Marty A, Mauersberger S, Smit M, Nicaud J (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543CrossRefPubMedGoogle Scholar
  7. Gancedo C, Llobell A, Ribas JC, Luchi F (1986) Isolation and characterization of mutants from Schyzosaccharomyces pombe defective in glycerol catabolism. Eur J Biochem 159:171–174CrossRefPubMedGoogle Scholar
  8. Lazar Z, Rossignol T, Verbeke J, Crutz-Le Coq A-M, Nicaud J-M, Robak M (2013) Optimized invertase expression and secretion cassette for improving Yarrowia lipolytica growth on sucrose for industrial applications. J Ind Microbiol Biotechnol 40:1273–1283CrossRefPubMedPubMedCentralGoogle Scholar
  9. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  10. Lüers GH, Advani R, Wenzel T, Subramani S (1998) The Pichia pastoris dihydroxyacetone kinase is a PTS1-containing, but cytosolic, protein that is essential for growth on methanol. Yeast 14:759–771CrossRefPubMedGoogle Scholar
  11. Mauersberger S, Wang HJ, Gaillardin C, Barth G, Nicaud JM (2001) Insertional mutagenesis in the n-alkane-assimilating yeast Yarrowia lipolytica: generation of tagged mutations in genes involved in hydrophobic substrate utilization. J Bacteriol 183:5102–5109CrossRefPubMedPubMedCentralGoogle Scholar
  12. Mirończuk A-M, Rakicka M, Biegalska A, Rymowicz W, Dobrowolski A (2015) A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol. Bioresour Technol 198:445–455CrossRefPubMedGoogle Scholar
  13. Molin M, Norbeck J, Blomberg A (2003) Dihydroxyacetone kinases in Saccharomyces cerevisiae are involved in detoxification of dihydroxyacetone. J Biol Chem 278:1415–1423CrossRefPubMedGoogle Scholar
  14. Moon H-J, Jeya M, Kim I-W, Lee J (2010) Biotechnological production of erythritol and its applications. Appl Microbiol Biotechnol 86:1017–1025CrossRefPubMedGoogle Scholar
  15. Nicaud J-M (2012) Yarrowia lipolytica. Yeast 29:409–418CrossRefPubMedGoogle Scholar
  16. Nishimura K, Harada T, Arita Y, Watanabe H, Iwabuki H, Terada A, Naganuma T, Uzuka Y (2006) Identification of enzyme responsible for erythritol utilization and reaction product in yeast Lipomyces starkeyi. J Biosci Bioeng 101:303–308CrossRefPubMedGoogle Scholar
  17. Paradowska K, Nitka D (2009) Purification and characterization of erythritol dehydrogenase from Mycobacterium smegmatis. Ann UMCS Pharmacia 22:47–55CrossRefGoogle Scholar
  18. Pignède G, Wang HJ, Fudalej F, Seman M, Gaillardin C, Nicaud JM (2000) Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol 66:3283–3289CrossRefPubMedPubMedCentralGoogle Scholar
  19. Querol A, Barrio E, Huerta T, Ramón D (1992) Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl Environ Microbiol 58:2948–2953PubMedPubMedCentralGoogle Scholar
  20. Rakicka M, Rywińska A, Cybulski K, Rymowicz W (2016) Enhanced production of erythritol and mannitol by Yarrowia lipolytica in media containing surfactants. Braz J Microbiol 47:417–423CrossRefPubMedPubMedCentralGoogle Scholar
  21. Rymowicz W, Rywińska A, Marcinkiewicz M (2008) High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol Lett 31:377–380CrossRefPubMedGoogle Scholar
  22. Rywińska A, Juszczyk P, Wojtatowicz M, Robak M, Lazar Z, Tomaszewska L, Rymowicz W (2013) Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass Bioenergy 48:148–166CrossRefGoogle Scholar
  23. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual: Vol. 2 (S.l.: Cold Spring Harbor)Google Scholar
  24. Sassi H, Delvigne F, Kar T, Nicaud J-M, Coq A-M, Steels S, Fickers P (2016) Deciphering how LIP2 and POX2 promoters can optimally regulate recombinant protein production in the yeast Yarrowia lipolytica. Microb Cell Factories 15:159–169CrossRefGoogle Scholar
  25. Thevenieau F, Le Dall MT, Nthangeni B, Mauersberger S, Marchal R, Nicaud JM (2007) Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet Biol 44:531–542CrossRefPubMedGoogle Scholar
  26. Tomaszewska L, Rywińska A, Gładkowski W (2012) Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J Ind Microbiol Biotechnol 39:1333–1343CrossRefPubMedPubMedCentralGoogle Scholar
  27. Tomaszewska L, Rywińska A, Rymowicz W (2014a) High selectivity of erythritol production from glycerol by Yarrowia lipolytica. Biomass Bioenergy 64:309–320CrossRefGoogle Scholar
  28. Tomaszewska L, Rakicka M, Rymowicz W, Rywińska A (2014b) A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells. FEMS Yeast Res:966–976Google Scholar
  29. Vandermies M, Denies O, Nicaud JM, Fickers P (2017) EYK encoding erythrulose kinase as a catabolic selectable marker for genome editing in the non-conventional yeast Yarrowia lipolytica. To be publishedGoogle Scholar
  30. Workman M, Holt P, Thykaer J (2013) Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations. AMB Express 3:58CrossRefPubMedPubMedCentralGoogle Scholar
  31. Yang L-B, Zhan X-B, Zheng Z-Y, Wu J-R, Gao M-J, Lin C-C (2014) A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresour Technol 151:120–127CrossRefPubMedGoogle Scholar
  32. Zinjarde SS (2014) Food-related applications of Yarrowia lipolytica. Food Chem 152:1–10CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Unité de Biotechnologies et BioprocédésUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Micalis Institute, INRA, AgroParisTechUniversité Paris-SaclayJouy-en-JosasFrance
  3. 3.Microbial Processes and Interactions, TERRA Teaching and Research CentreUniversity of Liège—Gembloux Agro-Bio TechGemblouxBelgium
  4. 4.Laboratoire de Chimie Biologique Structurale, Département de ChimieUniversité de LiègeLiègeBelgium

Personalised recommendations