Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 15, pp 6277–6287 | Cite as

Multi-step biocatalytic depolymerization of lignin

  • Pere Picart
  • Haifeng Liu
  • Philipp M. Grande
  • Nico Anders
  • Leilei Zhu
  • Jürgen Klankermayer
  • Walter Leitner
  • Pablo Domínguez de María
  • Ulrich Schwaneberg
  • Anett Schallmey
Bioenergy and biofuels

Abstract

Lignin is a biomass-derived aromatic polymer that has been identified as a potential renewable source of aromatic chemicals and other valuable compounds. The valorization of lignin, however, represents a great challenge due to its high inherent functionalization, what compromises the identification of chemical routes for its selective depolymerization. In this work, an in vitro biocatalytic depolymerization process is presented, that was applied to lignin samples obtained from beech wood through OrganoCat pretreatment, resulting in a mixture of lignin-derived aromatic monomers. The reported biocracking route comprises first a laccase-mediator system to specifically oxidize the Cα hydroxyl group in the β-O-4 structure of lignin. Subsequently, selective β-O-4 ether cleavage of the oxidized β-O-4 linkages is achieved with β-etherases and a glutathione lyase. The combined enzymatic approach yielded an oily fraction of low-molecular-mass aromatic compounds, comprising coniferylaldehyde and other guaiacyl and syringyl units, as well as some larger (soluble) fractions. Upon further optimization, the reported biocatalytic route may open a valuable approach for lignin processing and valorization under mild reaction conditions.

Keywords

Biomass conversion Lignin Ether bond cleavage β-etherase Laccase-mediator system 

Notes

Acknowledgements

We thank Dr. Jakob Mottweiler and Prof. Carsten Bolm (Institute of Organic Chemistry, RWTH Aachen University) for the generous provision of lignin model substrates 1 + 2. Additionally, we thank Dr. Christoph Räuber (Institute of Organic Chemistry, RWTH Aachen University) for the preparation of 2D NMR figures.

This work was performed as part of the Cluster of Excellence “Tailor-Made Fuels from Biomass” [grant EXC 236], which is funded by the Excellence Initiative of the German Research Foundation to promote science and research at German universities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2017_8360_MOESM1_ESM.pdf (277 kb)
ESM 1 (PDF 276 kb)

References

  1. Adler E (1977) Lignin chemistry—past, present and future. Wood Sci Technol 11:169–218CrossRefGoogle Scholar
  2. Amore A, Ciesielski PN, Lin C-Y, Salvachúa D, Sànchez I Nogué V (2016) Development of lignocellulosic biorefinery technologies: recent advances and current challenges. Austr J Chem 69:1201–1218. doi: 10.1071/CH16022 CrossRefGoogle Scholar
  3. Banoub JH, Delmas M (2003) Structural elucidation of the wheat straw lignin polymer by atmospheric pressure chemical ionization tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 38:900–903. doi: 10.1002/jms.503 CrossRefPubMedGoogle Scholar
  4. Bouxin FP, McVeigh A, Tran F, Westwood NJ, Jarvis MC, Jackson SD (2015) Catalytic depolymerisation of isolated lignins to fine chemicals using a Pt/alumina catalyst: part 1—impact of the lignin structure. Green Chem 17:1235–1242. doi: 10.1039/c4gc01678e
  5. Bugg TDH, Rahmanpour R (2015) Enzymatic conversion of lignin into renewable chemicals. Curr Opin Chem Biol 29:10–17. doi: 10.1016/j.cbpa.2015.06.009 CrossRefPubMedGoogle Scholar
  6. Chen YR, Sarkanen S, Wang YY (2012) Lignin-degrading enzyme activities. Methods Mol Biol 908:251–268. doi: 10.1007/978-1-61779-956-3_21 PubMedGoogle Scholar
  7. Crestini C, Melone F, Sette M, Saladino R (2011) Milled wood lignin: a linear oligomer. Biomacromolecules 12:3928–3935. doi: 10.1021/bm200948r CrossRefPubMedGoogle Scholar
  8. De Gonzalo G, Colpa DI, Habib MHM, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119. doi: 10.1016/j.jbiotec.2016.08.011 CrossRefPubMedGoogle Scholar
  9. Eriksson K-E, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, BerlinCrossRefGoogle Scholar
  10. Gall DL, Ralph J, Donohue TJ, Noguera DR (2014a) A group of sequence-related sphingomonad enzymes catalyzes cleavage of β-aryl ether linkages in lignin β-guaiacyl and β-syringyl ether dimers. Environ Sci Technol 48:12454–12463. doi: 10.1021/es503886d CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gall DL, Kim H, Lu F, Donohue TJ, Noguera DR, Ralph J (2014b) Stereochemical features of glutathione-dependent enzymes in the Sphingobium sp. strain SYK-6 β-aryl etherase pathway. J Biol Chem 289:8656–8667. doi: 10.1074/jbc.M113.536250 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Grande PM, Viell J, Theyssen N, Marquardt W, Domínguez de María P, Leitner W (2015) Fractionation of lignocellulosic biomass using the OrganoCat process. Green Chem 17:3533–3539. doi: 10.1039/C4GC02534B CrossRefGoogle Scholar
  13. Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi: 10.1016/j.biortech.2008.05.027 CrossRefPubMedGoogle Scholar
  14. Isikgor FH, Becer R (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. doi: 10.1039/c5py00263j CrossRefGoogle Scholar
  15. Jones RW, Reinot T, McClelland JF (2010) Molecular analysis of primary vapor and char products during stepwise pyrolysis of poplar biomass. Energy Fuel 24:5199–5209. doi: 10.1021/ef100655n CrossRefGoogle Scholar
  16. Lancefield CS, Ojo OS, Tran F, Westwood NJ (2015) Isolation of functionalized phenolic monomers through selective oxidation and C-O bond cleavage of the β-O-4 linkages in lignin. Angew Chem Int Ed Engl 54:258–262. doi: 10.1002/ange.201409408 CrossRefPubMedGoogle Scholar
  17. Liu H, Zhu L, Bocola M, Chen N, Spiess AC, Schwaneberg U (2013) Directed laccase evolution for improved ionic liquid resistance. Green Chem 15:1348–1355. doi: 10.1039/C3GC36899H CrossRefGoogle Scholar
  18. Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Cronan JE, Gerlt JA (2014) Roles of small laccases from Streptomyces in lignin degradation. Biochemistry 53:4047–4058. doi: 10.1021/bi500285t CrossRefPubMedGoogle Scholar
  19. Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204PubMedGoogle Scholar
  20. Masai E, Katayama Y, Nishikawa S, Yamasaki M, Morohoshi N, Haraguchi T (1989) Detection and localization of a new enzyme catalyzing the β-aryl ether cleavage in the soil bacterium (Pseudomonas paucimobilis SYK-6). FEBS Lett 249:348–352. doi: 10.1016/0014-5793(89)80656-8 CrossRefPubMedGoogle Scholar
  21. Masai E, Katayama Y, Kubota S, Kawai S, Yamasaki M, Morohoshi N (1993a) A bacterial enzyme degrading the model lignin compound β-etherase is a member of the glutathione-S-transferase superfamily. FEBS Lett 323:135–140. doi: 10.1016/0014-5793(93)81465-C CrossRefPubMedGoogle Scholar
  22. Masai E, Kubota S, Katayama Y, Kawai S, Yamasaki M, Morohoshi N (1993b) Characterization of the Cα-dehydrogenase gene involved in the cleavage of β-aryl ether by Pseudomonas paucimobilis. Biotechnol Biochem 57:1655–1659. doi: 10.1271/bbb.57.1655 CrossRefGoogle Scholar
  23. Masai E, Katayama Y, Nishikawa S, Fukuda M (1999) Characterization of Sphingomonas paucimobilis SYK-6 genes involved in degradation of lignin-related compounds. J Ind Microbiol Biotechnol 23:364–373. doi: 10.1038/sj.jim.2900747 CrossRefPubMedGoogle Scholar
  24. Masai E, Ichimura A, Sato Y, Miyauchi K, Katayama Y, Fukuda M (2003) Roles of the enantioselective glutathione-S-transferases in cleavage of β-aryl ether. J Bacteriol 185:1768–1775. doi: 10.1128/JB.185.6.1768-1775.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71:1–15. doi: 10.1271/bbb.60437 CrossRefPubMedGoogle Scholar
  26. Morreel K, Dima O, Kim H, Lu F, Niculaes C, Vanholme R, Dauwe R, Goeminne G, Inzé D, Messens E, Ralph J, Boerjan W (2010a) Mass spectrometry-based sequencing of lignin oligomers. Plant Physiol 153:1464–1478. doi: 10.1104/pp.110.156489 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Morreel K, Kim H, Lu F, Dima O, Akiyama T, Vanholme R, Niculaes C, Goeminne G, Inzé D, Messens E, Ralph J, Boerjan W (2010b) Mass spectrometry-based fragmentation as an identification tool in lignomics. Anal Chem 82:8095–8105. doi: 10.1021/ac100968g CrossRefPubMedGoogle Scholar
  28. Munk L, Sitarz AK, Kalyani DC, Mikkelsen JD, Meyer AS (2015) Can laccases catalyze bond cleavage in lignin? Biotechnol Adv 33:13–24. doi: 10.1016/j.biotechadv.2014.12.008 CrossRefPubMedGoogle Scholar
  29. Ohta Y, Nishi S, Hasegawa R, Hatada Y (2015) Combination of six enzymes of a marine Novosphingobium converts the stereoisomers of β-O-4 lignin model dimers into the respective monomers. Sci Rep 5:15105–15118. doi: 10.1038/srep15105 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ohta Y, Hasegawa R, Kurosawa K, Maeda AH, Koizumi T, Nishimura H, Okada H, Qu C, Saito K, Watanabe T, Hatada Y (2016) Enzymatic specific production and chemical functionalization of phenylpropanone platform monomers from lignin. ChemSusChem 10:425–433. doi: 10.1002/cssc.201601235 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Palazzolo MA, Kurina-Sanz M (2016) Microbial utilization of lignin: available biotechnologies for its degradation and valorization. World J Microbiol Biotechnol 32:173. doi: 10.1007/s11274-016-2128-y CrossRefPubMedGoogle Scholar
  32. Picart P, Müller C, Mottweiler J, Wiermans L, Bolm C, Domínguez de María P, Schallmey A (2014) From gene towards selective biomass valorization: bacterial β-etherases with catalytic activity on lignin-like polymers. ChemSusChem 7:3164–3171. doi: 10.1002/cssc.201402465 CrossRefPubMedGoogle Scholar
  33. Picart P, Sevenich M, Domínguez de María P, Schallmey A (2015a) Exploring glutathione lyases as biocatalysts: paving the way for enzymatic lignin depolymerization and future stereoselective applications. Green Chem 17:4931–4940. doi: 10.1039/C5GC01078K CrossRefGoogle Scholar
  34. Picart P, Domínguez de María P, Schallmey A (2015b) From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization. Front Microbiol 6:916. doi: 10.3389/fmicb.2015.00916 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282:1190–1213. doi: 10.1111/febs.13224 CrossRefPubMedGoogle Scholar
  36. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallet JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinki T (2006) The path forward for biofuels and biomaterials. Science 311:484–489. doi: 10.1126/science.1114736 CrossRefPubMedGoogle Scholar
  37. Ragauskas AJ, Beckham GT, Biddy MT, Chandra R, Chen F, Davis MF, Davison BH, Nixon RA, Glina P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843. doi: 10.1126/science.1246843 CrossRefPubMedGoogle Scholar
  38. Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS (2013) Chemoselective metal-free aerobic alcohol oxidation in lignin. J Am Chem Soc 135:6415–6418. doi: 10.1021/ja401793n CrossRefPubMedGoogle Scholar
  39. Rahimi A, Ulbrich A, Coon JJ, Stahl SS (2014) Formic-acid induced depolymerization of oxidized lignin to aromatics. Nature 13:249–252. doi: 10.1038/nature13867 CrossRefGoogle Scholar
  40. Reiter J, Strittmatter H, Wiemann LO, Schieder D, Sieber V (2013) Enzymatic cleavage of lignin β-O-4 aryl ether bonds via net internal hydrogen transfer. Green Chem 15:1373–1381. doi: 10.1039/C3GC40295A CrossRefGoogle Scholar
  41. Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PC, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed Engl 55:8164–8215. doi: 10.1002/anie.201510351 CrossRefPubMedGoogle Scholar
  42. Saito K, Kato T, Tsuji Y, Fukushima K (2005) Identifying the characteristic secondary ions of lignin polymer using ToF-SIMS. Biomacromolecules 6:678–683. doi: 10.1021/bm049521v CrossRefPubMedGoogle Scholar
  43. Sato Y, Moriuchi H, Hishiyama S, Otsuka Y, Oshima K, Kasai D, Nakamura M, Ohara S, Katayama Y, Fukuda M, Masai E (2009) Identification of three alcohol dehydrogenase genes involved in the stereospecific catabolism of arylglycerol-β-aryl ether by Sphingobium sp. strain SYK-6. Appl Environ Microbiol 75:5195–5201. doi: 10.1128/AEM.00880-09 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tolbert H, Akinosho R, Khunsupat AK, Naskar A, Ragauskas J (2014) Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels Bioprod Biorefin 8:836–856. doi: 10.1002/bbb.1500 CrossRefGoogle Scholar
  45. Viell J, Harwardt A, Seiler J, Marquardt W (2013) Is biomass fractionation by Organosolv-like processes economically viable? A conceptual design study. Bioresour Technol 150:89–97. doi: 10.1016/j.biortech.2013.09.078 CrossRefPubMedGoogle Scholar
  46. vom Stein T, Grande PM, Kayser H, Sibilla F, Leitner W, Domínguez de María P (2011) From biomass to feedstock: one-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system. Green Chem 13:1772–1777. doi: 10.1039/C1GC00002K CrossRefGoogle Scholar
  47. Weckbecker A, Gröger H, Hummel W (2010) Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. Adv Biochem Engin/Biotechnol 120:195–242. doi: 10.1007/10_2009_55 Google Scholar
  48. Wiermans L, Schumacher H, Klaassen CM, Domínguez de María P (2015) Unprecedented catalyst-free lignin dearomatization with hydrogen peroxide and dimethyl carbonate. RSC Adv 5:4009–4018. doi: 10.1039/C4RA13113D CrossRefGoogle Scholar
  49. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599. doi: 10.1021/cr900354u CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institut für BiotechnologieRWTH Aachen UniversityAachenGermany
  2. 2.Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityAachenGermany
  3. 3.Aachener Verfahrenstechnik—Lehrstuhl für EnzymprozesstechnikRWTH Aachen UniversityAachenGermany
  4. 4.Sustainable Momentum, SLLas Palmas de Gran CanariaSpain
  5. 5.Institut für Biochemie, Biotechnologie und BioinformatikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations