Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 15, pp 6039–6048 | Cite as

Overproduction of Rummeliibacillus pycnus arginase with multi-copy insertion of the arg R.pyc cassette into the Bacillus subtilis chromosome

  • Kai Huang
  • Tao Zhang
  • Bo JiangEmail author
  • Xin Yan
  • Wanmeng Mu
  • Ming Miao
Biotechnologically relevant enzymes and proteins

Abstract

A plasmid-less and marker-less strain with multi-copy integration of the arginase gene from Rummeliibacillus pycnus was constructed using Bacillus subtilis 168 as a host. A total of nine copies of the arg R.pyc cassettes, in which the R. pycnus arginase gene was fused with the strong promoter P43, were inserted into the recipient chromosome. These multiple insertions were completed via step-by-step integrations into designed (2 copies) and random (9 copies) sites, respectively. A strategy for random site integration was developed based on the construction of the arg R.pyc cassette sandwiched between “front” and “back” homologous arms which were randomly restricted from chromosomal DNA. An antibiotic resistance marker was applied in transformant selection and was eliminated via the Cre/lox system. Performance showed that the highest enzyme activity (14.5 U/mL) was obtained after culture in flasks, and this segregation stable strain could efficiently hydrolyze l-arginine with a 97.2% molar yield, showing potential application in the food industry.

Keywords

l-ornithine Bacillus subtilis Rummeliibacillus pycnus arginase Integration Multi-copy Marker-less 

Notes

Acknowledgments

This work was financially supported by the 863 Project of China (No. 2013AA102102) and the Fundamental Research Funds for the Central Universities (SKLF-ZZA-201509).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2017_8355_MOESM1_ESM.pdf (542 kb)
ESM 1 (PDF 541 kb).

References

  1. Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81(5):741–746PubMedPubMedCentralGoogle Scholar
  2. Bron S, Holsappel S, Venema G, Peeters BPH (1991) Plasmid deletion formation between short direct repeats in Bacillus subtilis is stimulated by single-stranded rolling-circle replication intermediates. Mol gen Genet 226(1–2):88–96. doi: 10.1007/BF00273591 CrossRefPubMedGoogle Scholar
  3. Fleming GT, Patching DJW (1994) Plasmid instability in an industrial strain of Bacillus subtilis grown in chemostat culture. J Ind Microbiol 13(2):106–111. doi: 10.1007/BF01584107 CrossRefPubMedGoogle Scholar
  4. Harju S, Fedosyuk H, Peterson KR (2004) Rapid isolation of yeast genomic DNA: bust n’ grab. BMC Biotechnol 4(1):1–6. doi: 10.1186/1472-6750-4-8 CrossRefGoogle Scholar
  5. Härtl B, Wehrl W, Wiegert T, Homuth G, Schumann W (2001) Development of a new integration site within the Bacillus subtilis chromosome and construction of compatible expression cassettes. J Bacteriol 183(8):2696–2699. doi: 10.1128/JB.183.8.2696-2699.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  6. He W, Mu W, Jiang B, Yan X, Zhang T (2016) Food-grade expression of d-Psicose 3-epimerase with tandem repeat genes in Bacillus subtilis. J Agr Food Chem 64(28):5701–5707. doi: 10.1021/acs.jafc.6b02209 CrossRefGoogle Scholar
  7. Huang K, Zhang T, Jiang B, Mu W, Miao M (2016) Characterization of a thermostable arginase from Rummeliibacillus pycnus SK31.001. J Mol Catal B-Enz. doi: 10.1016/j.molcatb.2016.11.020
  8. Jalan R, Wright G, Davies NA, Hodges SJ (2007) L-Ornithine phenylacetate (OP): a novel treatment for hyperammonemia and hepatic encephalopathy. Med Hypotheses 69(5):1064–1069. doi: 10.1016/j.mehy.2006.12.061 CrossRefPubMedGoogle Scholar
  9. Jeong KJ, Park IY, Kim MS, Kim SC (1998) High-level expression of an endoxylanase gene from Bacillus sp. in Bacillus subtilis DB104 for the production of xylobiose from xylan. Appl Microbiol Biotechnol 50(1):113. doi: 10.1007/s002530051264 CrossRefPubMedGoogle Scholar
  10. Kastner S, Perreten V, Bleuler H, Hugenschmidt G, Lacroix C, Meile L (2006) Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Syst Appl Microbiol 29(2):145–155. doi: 10.1016/j.syapm.2005.07.009 CrossRefPubMedGoogle Scholar
  11. Lee SH, Kim HJ, Shin YA, Kim KH, Lee SJ (2016) Single crossover-mediated markerless genome engineering in Clostridium acetobutylicum. J Microbiol Biotechnol 26(4):725–729. doi: 10.4014/jmb.1512.12012 CrossRefPubMedGoogle Scholar
  12. Meissner L, Kauffmann K, Wengeler T, Mitsunaga H, Fukusaki E, Büchs J (2015) Influence of nitrogen source and pH value on undesired poly(γ-glutamic acid) formation of a protease producing Bacillus licheniformis strain. J Ind Microbiol Biot 42(9):1203–1215. doi: 10.1007/s10295-015-1640-7 CrossRefGoogle Scholar
  13. Parsons JB, Frank MW, Eleveld MJ, Schalkwijk J, Broussard TC, Jonge MID, Rock CO (2014) A thioesterase bypasses the requirement for exogenous fatty acids in the plsX deletion of Streptococcus pneumoniae. Mol Microbiol 96(1):28–41. doi: 10.1111/mmi.12916 CrossRefGoogle Scholar
  14. Povelainen M, Miasnikov AN (2007) Production of xylitol by metabolically engineered strains of Bacillus subtilis. J Bacteriol 128(1):24–31. doi: 10.1016/j.jbiotec.2006.09.008 Google Scholar
  15. Pushnova EA, Geier M, Yu SZ (2000) An easy and accurate agarose gel assay for quantitation of bacterial plasmid copy numbers. Anal Biochem 284(1):70–76. doi: 10.1006/abio.2000.4668 CrossRefPubMedGoogle Scholar
  16. Sauer C, Syvertsson S, Bohorquez LC, Cruz R, Harwood CR, van Rij T, Hamoen LW (2016) Effect of genome position on heterologous gene expression in Bacillus subtilis: an unbiased analysis. ACS Synth Biol 5(9):942–947. doi: 10.1021/acssynbio.6b00065 CrossRefPubMedGoogle Scholar
  17. Schumann W (2007) Production of recombinant proteins in Bacillus subtilis. Adv Appl Microbiol 62(62):137–189. doi: 10.1016/S0065-2164(07)62006-1 CrossRefPubMedGoogle Scholar
  18. Shoham Y, Demain AL (1991) Kinetics of loss of a recombinant plasmid in Bacillus subtilis. Biotechnol Bioeng 37(10):927–935. doi: 10.1002/bit.260371006 CrossRefPubMedGoogle Scholar
  19. Sietske ADB, Diderichsen B (1991) On the safety of Bacillus subtilis and B. amyloliquefaciens: a review. Appl Microbiol Biotechnol 36(1):1–4. doi: 10.1007/BF00164689 CrossRefGoogle Scholar
  20. Song W, Niu P, Chen X, Liu L (2014) Enzymatic production of L-ornithine from L-arginine with recombinant thermophilic arginase. J Mol Catal B-Enz 110:1–7. doi: 10.1016/j.molcatb.2014.09.005 CrossRefGoogle Scholar
  21. Straathof AJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotech 13(6):548–556. doi: 10.1016/S0958-1669(02)00360-9 CrossRefPubMedGoogle Scholar
  22. Sugino T, Shirai T, Kajimoto Y, Kajimoto O (2008) L-Ornithine supplementation attenuates physical fatigue in healthy volunteers by modulating lipid and amino acid metabolism. Nutr res 28(11):738–743. doi: 10.1016/j.nutres.2008.08.008 CrossRefPubMedGoogle Scholar
  23. Tchetina E, Newman EB (1995) Identification of Lrp-regulated genes by inverse PCR and sequencing: regulation of two mal operons of Escherichia coli by leucine-responsive regulatory protein. J Bacteriol 177(10):2679–2683CrossRefPubMedPubMedCentralGoogle Scholar
  24. Wang G, Chen H, Zhang H, Song Y, Chen W (2013) The secretion of an intrinsically disordered protein with different secretion signals in Bacillus subtilis. Curr Microbiol 66(6):566–572. doi: 10.1007/s00284-013-0315-8 CrossRefPubMedGoogle Scholar
  25. Wang M, Xu M, Rao Z, Yang T, Zhang X (2015) Construction of a highly efficient Bacillus subtilis 168 whole-cell biocatalyst and its application in the production of L-ornithine. J Ind Microbiol Biotechnol 42(11):1427–1437. doi: 10.1007/s10295-015-1672-z CrossRefPubMedGoogle Scholar
  26. Wu SC, Wong SL (1999) Development of improved pUB110-based vectors for expression and secretion studies in Bacillus subtilis. J Biotechnol 72(1–2):185–195. doi: 10.1016/S0168-1656(99)00101-7 CrossRefPubMedGoogle Scholar
  27. Würtele H, Little KCE, Chartrand P (2003) Illegitimate DNA integration in mammalian cells. Gene Ther 10(21):1791–1799. doi: 10.1038/sj.gt.3302074 CrossRefPubMedGoogle Scholar
  28. Yan X, Yu HJ, Hong Q, Li SP (2008) Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl Environ Microb 74(17):5556–5562. doi: 10.1128/AEM.01156-08 CrossRefGoogle Scholar
  29. Yomantas YA, Abalakina EG, Golubeva LI, Gorbacheva LY, Mashko SV (2011) Overproduction of Bacillus amyloliquefaciens extracellular glutamyl-endopeptidase as a result of ectopic multi-copy insertion of an efficiently-expressed mpr gene into the Bacillus subtilis chromosome. Microb Cell Factories 10(1):1–10. doi: 10.1186/1475-2859-10-64 CrossRefGoogle Scholar
  30. Yu JJ, Park KB, Kim SG, Oh SH (2013) Expression, purification, and biochemical properties of arginase from Bacillus subtilis 168. J Microbiol 51(2):222–228. doi: 10.1007/s12275-013-2669-9 CrossRefPubMedGoogle Scholar
  31. Zhang T, Guo Y, Zhang H, Mu W, Miao M, Jiang B (2013) Arginase from Bacillus thuringiensis SK 20.001: purification, characteristics, and implications for L-ornithine biosynthesis. Process Biochem 48(4):663–668. doi: 10.1016/j.procbio.2013.02.023 CrossRefGoogle Scholar
  32. Zhu T, Guo M, Tang Z, Zhang M, Zhuang Y, Chu J, Zhang S (2009) Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris. J Appl Microbiol 107(3):954–963. doi: 10.1111/j.1365-2672.2009.04279.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Kai Huang
    • 1
  • Tao Zhang
    • 1
  • Bo Jiang
    • 1
    Email author
  • Xin Yan
    • 2
  • Wanmeng Mu
    • 1
  • Ming Miao
    • 1
  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of AgricultureNanjing Agricultural UniversityNanjingChina

Personalised recommendations