Applied Microbiology and Biotechnology

, Volume 101, Issue 14, pp 5773–5783 | Cite as

Characterization of an Lrp/AsnC family regulator SCO3361, controlling actinorhodin production and morphological development in Streptomyces coelicolor

  • Jing Liu
  • Jie Li
  • Hong Dong
  • Yunfu Chen
  • Yansheng Wang
  • Hang Wu
  • Changrun Li
  • David T. Weaver
  • Lixin Zhang
  • Buchang Zhang
Applied genetics and molecular biotechnology

Abstract

Lrp/AsnC family regulators have been found in many bacteria as crucial regulators controlling diverse cellular processes. By genomic alignment, we found that SCO3361, an Lrp/AsnC family protein from Streptomyces coelicolor, shared the highest similarity to the SACE_Lrp from Saccharopolyspora erythraea. Deletion of SCO3361 led to dramatic reduction in actinorhodin (Act) production and delay in aerial mycelium formation and sporulation on solid media. Dissection of the mechanism underlying the function of SCO3361 in Act production revealed that it altered the transcription of the cluster-situated regulator gene actII-ORF4 by directly binding to its promoter. SCO3361 was an auto-regulator and simultaneously activated the transcription of its adjacent divergently transcribed gene SCO3362. SCO3361 affected aerial hyphae formation and sporulation of S. coelicolor by activating the expression of amfC, whiB, and ssgB. Phenylalanine and cysteine were identified as the effector molecules of SCO3361, with phenylalanine reducing the binding affinity, whereas cysteine increasing it. Moreover, interactional regulation between SCO3361 and SACE_Lrp was discovered for binding to each other’s target gene promoter in this work. Our findings indicate that SCO3361 functions as a pleiotropic regulator controlling secondary metabolism and morphological development in S. coelicolor.

Keywords

Lrp/AsnC family Streptomyces coelicolor SCO3361 Act production Morphological development Interactional regulation 

Supplementary material

253_2017_8339_MOESM1_ESM.pdf (801 kb)
ESM 1(PDF 801 kb)

References

  1. Bentley SD, Chater KF, Cerdeñotárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417(6885):141–147CrossRefPubMedGoogle Scholar
  2. Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8(2):208CrossRefPubMedGoogle Scholar
  3. Brinkman AB, Bell SD, Lebbink RJ, de Vos WM, van der Oost J (2002) The Sulfolobus solfataricus Lrp-like protein LysM regulates lysine biosynthesis in response to lysine availability. J Biol Chem 277(33):29537–29549CrossRefPubMedGoogle Scholar
  4. Brinkman AB, Ettema TJG, Vos WMD, Oost JVD (2003) The Lrp family of transcriptional regulators. Mol Microbiol 48(2):287–294CrossRefPubMedGoogle Scholar
  5. Chong PP, Podmore SM, Kieser HM, Redenbach M, Turgay K, Marahiel M, Hopwood DA, Smith CP (1998) Physical identification of a chromosomal locus encoding biosynthetic genes for the lipopeptide calcium-dependent antibiotic (CDA) of Streptomyces coelicolor A3(2). Microbiology 144(Pt 1):193–199CrossRefPubMedGoogle Scholar
  6. Davis NK, Chater KF (1992) The Streptomyces coelicolor whiB gene encodes a small transcription factor-like protein dispensable for growth but essential for sporulation. Mol Gen Genomics 232(3):351Google Scholar
  7. Deng W, Wang H, Xie J (2011) Regulatory and pathogenesis roles of Mycobacterium Lrp/AsnC family transcriptional factors. J Cell Biochem 112(10):2655–2662CrossRefPubMedGoogle Scholar
  8. Floriano B, Bibb M (1996) afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21(2):385CrossRefPubMedGoogle Scholar
  9. Fried LM, Hellman MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2(8):1849–1861CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gao C, Hindra, Mulder D, Yin C, Elliot MA (2011) Crp is a global regulator of antibiotic production in Streptomyces. MBio 3(6):17–17Google Scholar
  11. Han S, Song P, Ren T, Huang X, Cao C, Zhang B (2011) Identification of SACE_7040, a member of TetR family related to the morphological differentiation of Saccharopolyspora erythraea. Curr Microbiol 63(2):121–125CrossRefPubMedGoogle Scholar
  12. Hesketh A, Kock H, Mootien S, Bibb M (2009) The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 74(6):1427CrossRefPubMedGoogle Scholar
  13. Hojati Z, Milne C, Harvey B, Gordon L, Borg M, Flett F, Wilkinson B, Sidebottom P, Rudd B, Hayes M (2002) Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem Biol 9(11):1175–1187CrossRefPubMedGoogle Scholar
  14. Horinouchi S (2003) AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J Ind Microbiol Biotechnol 30(8):462–467CrossRefPubMedGoogle Scholar
  15. Jeong Y, Kim J-N, Kim MW, Bucca G, Cho S, Yoon YJ, Kim B-G, Roe J-H, Kim SC, Smith CP, Cho B-K (2016) The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat Commun 7:11605. doi:10.1038/ncomms11605 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Keijser BJ, Noens EE, Kraal B, Koerten HK, van Wezel GP (2003) The Streptomyces coelicolor ssgB gene is required for early stages of sporulation. FEMS Microbiol Lett 225(1):59–67CrossRefPubMedGoogle Scholar
  17. Kieser T, Bibb MJ, Buttner MJ, Charter KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, NorwichGoogle Scholar
  18. Lintner RE, Mishra PK, Srivastava P, Martinez-Vaz BM, Khodursky AB, Blumenthal RM (2008) Limited functional conservation of a global regulator among related bacterial genera: Lrp in Escherichia, Proteus and Vibrio. BMC Microbiol 8(1):60CrossRefPubMedPubMedCentralGoogle Scholar
  19. Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77(1):112–143CrossRefPubMedPubMedCentralGoogle Scholar
  20. Liu J, Chen Y, Wang W, Ren M, Wu P, Wang Y, Li C, Zhang L, Wu H, Weaver DT, Zhang B (2017) Engineering of an Lrp family regulator SACE_Lrp improves erythromycin production in Saccharopolyspora erythraea. Metab Eng 39:29–37. doi:10.1016/j.ymben.2016.10.012 CrossRefPubMedGoogle Scholar
  21. Malpartida F, Niemi J, Navarrete R, Hopwood DA (1990) Cloning and expression in a heterologous host of the complete set of genes for biosynthesis of the Streptomyces coelicolor antibiotic undecylprodigiosin. Gene 93(1):91–99CrossRefPubMedGoogle Scholar
  22. Martín JF, Liras P (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13(3):263–273CrossRefPubMedGoogle Scholar
  23. Mo S, Sydor PK, Corre C, Alhamadsheh MM, Stanley AE, Haynes SW, Song L, Reynolds KA, Challis GL (2008) Elucidation of the Streptomyces coelicolor pathway to 2-undecylpyrrole, a key intermediate in undecylprodiginine and streptorubin B biosynthesis. Chem Biol 15(2):137–148CrossRefPubMedGoogle Scholar
  24. Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the Actinomycetes. Nat Prod Rep 26(11):1362–1384Google Scholar
  25. Okamoto S, Taguchi T, Ochi K, Ichinose K (2009) Biosynthesis of actinorhodin and related antibiotics: discovery of alternative routes for quinone formation encoded in the act gene cluster. Chem Biol 16(2):226–236CrossRefPubMedGoogle Scholar
  26. Peeters E, Charlier D (2010) The Lrp family of transcription regulators in archaea. Archaea 2010:750457CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rigali S, Nothaft H, Noens EE, Schlicht M, Colson S, Müller M, Joris B, Koerten HK, Hopwood DA, Titgemeyer F, van Wezel GP (2006) The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 61(5):1237–1251Google Scholar
  28. Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9(7):670CrossRefPubMedPubMedCentralGoogle Scholar
  29. Romero DA, Hasan AH, Lin Y-f, Kime L, Ruiz-Larrabeiti O, Urem M, Bucca G, Mamanova L, Laing EE, van Wezel GP, Smith CP, Kaberdin VR, McDowall KJ (2014) A comparison of key aspects of gene regulation in Streptomyces coelicolor and Escherichia coli using nucleotide-resolution transcription maps produced in parallel by global and differential RNA sequencing. Mol Microbiol 94(5):963–987Google Scholar
  30. Song N, Duc TN, Oeffelen LV, Muyldermans S, Peeters E, Charlier D (2013) Expanded target and cofactor repertoire for the transcriptional activator LysM from Sulfolobus. Nucleic Acids Res 41(5):2932–2949CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sprusansky O, Stirrett K, Skinner D, Denoya C, Westpheling J (2005) The bkdR gene of Streptomyces coelicolor is required for morphogenesis and antibiotic production and encodes a transcriptional regulator of a branched-chain amino acid dehydrogenase complex. J Bacteriol 187(2):664–671Google Scholar
  32. Vockenhuber M-P, Sharma CM, Statt MG, Schmidt D, Xu Z, Dietrich S, Liesegang H, Mathews DH, Suess B (2012) Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor. RNA Biol 8(3):468–477. doi:10.4161/rna.8.3.14421 CrossRefGoogle Scholar
  33. Wang R, Mast Y, Wang J, Zhang W, Zhao G, Wohlleben W, Lu Y, Jiang W (2013) Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Mol Microbiol 87(1):30–48CrossRefPubMedGoogle Scholar
  34. Wezel GPV, Mcdowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28(7):1311–1333Google Scholar
  35. Wilkinson CJ, Hughes-Thomas ZA, Martin CJ, Böhm I, Mironenko T, Deacon M, Wheatcroft M, Wirtz G, Staunton J, Leadlay PF (2002) Increasing the efficiency of heterologous promoters in Actinomycetes. J Mol Microbiol Biotechnol 4(4):417–426Google Scholar
  36. Wright LF, Hopwood DA (1976) Actinorhodin is a chromosomally-determined antibiotic in Streptomyces coelicolar A3(2). J Gen Microbiol 96(2):289–297CrossRefPubMedGoogle Scholar
  37. Yonekawa T, Ohnishi Y, Horinouchi S (1999) Involvement of amfC in physiological and morphological development in Streptomyces coelicolor A3(2). Microbiology 145(Pt 9):2273–2280CrossRefPubMedGoogle Scholar
  38. Yu L, Pan Y, Liu G (2016) A regulatory Gene SCO2140 is involved in antibiotic production and morphological differentiation of Streptomyces coelicolor A3(2). Curr Microbiol 73(2):1–6CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jing Liu
    • 1
  • Jie Li
    • 1
  • Hong Dong
    • 1
  • Yunfu Chen
    • 1
  • Yansheng Wang
    • 1
  • Hang Wu
    • 1
  • Changrun Li
    • 1
  • David T. Weaver
    • 1
  • Lixin Zhang
    • 1
    • 2
  • Buchang Zhang
    • 1
  1. 1.Institute of Health Sciences, School of Chemistry and Chemical Engineering, School of Life SciencesAnhui UniversityHefeiChina
  2. 2.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations