Applied Microbiology and Biotechnology

, Volume 101, Issue 11, pp 4371–4385 | Cite as

The biology and the importance of Photobacterium species

  • Ibrahim Musa Moi
  • Noordiyanah Nadhirah Roslan
  • Adam Thean Chor Leow
  • Mohd Shukuri Mohamad Ali
  • Raja Noor Zaliha Raja Abd. Rahman
  • Azam Rahimpour
  • Suriana SabriEmail author


Photobacterium species are Gram-negative coccobacilli which are distributed in marine habitats worldwide. Some species are unique because of their capability to produce luminescence. Taxonomically, about 23 species and 2 subspecies are validated to date. Genomes from a few Photobacterium spp. have been sequenced and studied. They are considered a special group of bacteria because some species are capable of producing essential polyunsaturated fatty acids, antibacterial compounds, lipases, esterases and asparaginases. They are also used as biosensors in food and environmental monitoring and detectors of drown victim, as well as an important symbiont.


Photobacterium Marine bacteria Genome Applications 


Compliance with ethical standards


This study was funded by research grant number 02-02-14-1500FR under Fundamental Research Grant Scheme (FRGS) from the Ministry of Higher Education, Government of Malaysia.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Adachi K, Kawabata Y, Kasai H, Katsuta M, Shizuri Y (2007) Novel ngercheumicin or its salt useful for treating infection caused by Pseudovibrio denitrificans. Patent JP2007230911-AGoogle Scholar
  2. Adarme-Vega TC, Lim DKY, Timmins M, Vernen F, Li Y, Schenk PM (2012) Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Factories 11:96CrossRefGoogle Scholar
  3. Allen EE, Bartlett DH (2002) Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology 148:1903–1913PubMedCrossRefGoogle Scholar
  4. Alloush HM, Lewis RJ, Salisbury VC (2006) Bacterial bioluminescent biosensors: applications in food and environmental monitoring. Anal Lett 39:1517–1526CrossRefGoogle Scholar
  5. Andreoni F, Magnani M (2014) Photobacteriosis: prevention and diagnosis. J Immunol ResGoogle Scholar
  6. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589PubMedCrossRefGoogle Scholar
  7. Ast JC, Dunlap PV (2004) Phylogenetic analysis of the lux operon distinguishes two evolutionarily distinct clades of Photobacterium leiognathi. Arch Microbiol 181:352–361PubMedCrossRefGoogle Scholar
  8. Ast JC, Dunlap PV (2005) Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group. Environ Microbiol 7:1641–1654PubMedCrossRefGoogle Scholar
  9. Ast JC, Cleenwerck I, Engelbeen K, Urbanczyk H, Thompsom FL, De Vos P, Dunlap PV (2007a) Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes. Int J Syst Evol Microbiol 57:2073–2078PubMedCrossRefGoogle Scholar
  10. Ast JC, Urbanczyk H, Dunlap PV (2007b) Natural merodiploidy of the lux-rib operon of Photobacterium leiognathi from coastal waters of Honshu, Japan. J Bacteriol 189:6148–6158PubMedPubMedCentralCrossRefGoogle Scholar
  11. Ast JC, Urbanczyk H, Dunlap PV (2009) Multi-gene analysis reveals previously unrecognized phylogenetic diversity in Aliivibrio. Syst Appl Microbiol 32:379–386PubMedCrossRefGoogle Scholar
  12. Barnes A, dos Santos N, Ellis A (2005) Update on bacterial vaccines: Photobacterium damselae subsp. piscicida. Dev Biol (Basel) 121:75–84Google Scholar
  13. Baumann P, Baumann L (1981) The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation and identification of bacteria—volume II. Springer-Verlag, Berlin, pp 1302–1331Google Scholar
  14. Beijerinck M (1889) Le Photobacterium luminosum, bactérie lumineuse de la Mer du Nord. Arch Neerl Sci Exactes Nat 23:401–427Google Scholar
  15. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26PubMedCrossRefGoogle Scholar
  16. Boettcher K, Ruby E (1995) Detection and quantification of Vibrio fischeri autoinducer from symbiotic squid light organs. J Bacteriol 177:1053–1058PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brenner DJ, Krieg NR, Staley JT (2005) Part B the Gammaproteobacteria. In: Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 546–552Google Scholar
  18. Campanaro S, Vezzi A, Vitulo N, Lauro FM, D’Angelo M, Simonato F, Cestaro A, Malacrida G, Bertoloni G, Valle G, Bartlett DH (2005) Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics 6:122PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chimetto LA, Cleenwerck I, Thompson CC, Brocchi M, Willems A, De Vos P, Thompson FL (2010) Photobacterium jeanii sp. nov., isolated from corals and zoanthids. Int J Syst Evol Microbiol 60:2843–2848PubMedCrossRefGoogle Scholar
  20. Choudhury P, Bhunia B (2015) Industrial application of lipase: a review. Biopharm J 1:41–47Google Scholar
  21. Clardy J, Fischbach MA, Walsh CT (2006) New antibiotics from bacterial natural products. Nat Biotechnol 24:1541–1550PubMedCrossRefGoogle Scholar
  22. Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548PubMedCrossRefGoogle Scholar
  23. Costa-Ramos C, do Vale A, Ludovico P, dos Santos NMS, Silva MT (2011) The bacterial exotoxin AIP56 induces fish macrophage and neutrophil apoptosis using mechanisms of the extrinsic and intrinsic pathways. Fish Shellfish Immunol 30:173–181PubMedCrossRefGoogle Scholar
  24. Cutter DL, Kreger AS (1990) Cloning and expression of the damselysin gene from Vibrio damsela. Infect Immun 58:266–268Google Scholar
  25. Deep K, Poddar A, Das SK (2014) Photobacterium panuliri sp. nov., an alkalitolerant marine bacterium isolated from eggs of spiny lobster, Panulirus penicillatus from Andaman Sea. Curr Microbiol 69:660–668PubMedCrossRefGoogle Scholar
  26. Desriac F, Jégou C, Balnois E, Brillet B, Chevalier P, Fleury Y (2013) Antimicrobial peptides from marine Proteobacteria. Mar Drugs 11:3632–3660PubMedPubMedCentralCrossRefGoogle Scholar
  27. Do Vale A, Silva MT, Dos Santos NMS, Nascimento DS, Reis-Rodrigues P, Costa-Ramos C, Ellis AE, Azevedo JE (2005) AIP56, a novel plasmid-encoded virulence factor of Photobacterium damselae subsp. piscicida with apoptogenic activity against sea bass macrophages and neutrophils. Mol Microbiol 58:1025–1038PubMedCrossRefGoogle Scholar
  28. Dunlap PV (1985) Osmotic control of luminescence and growth in Photobacterium leiognathi from ponyfish light organs. Arch Microbiol 141:44–50PubMedCrossRefGoogle Scholar
  29. Dunlap P (2014) Biochemistry and genetics of bacterial bioluminescence. In Biolumin Fundam Appl Biotechnol Vol I, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 37–64Google Scholar
  30. Dunlap PV, Kita-Tsukamoto K (2006) Luminous bacteria. In: The prokaryotes. Springer, New York, pp 863–892CrossRefGoogle Scholar
  31. Dunlap PV, Urbanczyk H (2013) Luminous Bacteria. In: The prokaryotes. Springer, Berlin Heidelberg, pp 495–528CrossRefGoogle Scholar
  32. Dunlap PV, Jiemjit A, Ast JC, Pearce MM, Marques RR, Lavilla-Pitogo CR (2004) Genomic polymorphism in symbiotic populations of Photobacterium leiognathi. Environ Microbiol 6:145–158PubMedCrossRefGoogle Scholar
  33. Dunlap PV, Kojima Y, Nakamura S, Nakamura M (2009) Inception of formation and early morphogenesis of the bacterial light organ of the sea urchin cardinalfish, Siphamia versicolor. Mar Biol 156:2011–2020CrossRefGoogle Scholar
  34. Egan ES, Fogel MA, Waldor MK (2005) MicroReview: divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol Microbiol 56:1129–1138PubMedCrossRefGoogle Scholar
  35. Elgendy MY, Abdelsalam M, Moustafa M, Kenawy AM, and Seida A (2015) Caligus elongatus and Photobacterium damselae subsp piscicida concomitant infections affecting broodstock European seabass, Dicentrarchus labrax, with special reference to histopathological responses. J Aquac Res DevGoogle Scholar
  36. Fang J, Kato C (2007) FAS or PKS, lipid biosynthesis and stable carbon isotope fractionation in deep-sea piezophilic bacteria. Commun Curr Res Educ Top Trends Appl Microbiol 190–200Google Scholar
  37. Fang J, Barcelona MJ, Abrajano T, Nogi Y, Kato C (2002) Isotopic composition of fatty acids of extremely piezophilic bacteria from the Mariana Trench at 11,000 m. Mar Chem 80:1–9CrossRefGoogle Scholar
  38. Farmer Iii JJ, Hickman-Brenner FW (2006) The genera Vibrio and Photobacterium. In: The prokaryotes. Springer, New York, pp 508–563CrossRefGoogle Scholar
  39. Freese E, Rütters H, Köster J, Rullkötter J, Sass H (2009) Gammaproteobacteria as a possible source of eicosapentaenoic acid in anoxic intertidal sediments. Microb Ecol 57:444–454PubMedCrossRefGoogle Scholar
  40. Gauthier G, Lafay B, Ruimy R, Breittmayer V, Nicolas JL, Gauthier M, Christen R (1995) Small-subunit rRNA sequences and whole DNA relatedness concur for the reassignment of Pasteurella piscicida (Snieszko et al.) Janssen and Surgalla to the genus Photobacterium as Photobacterium damsela subsp. piscicida comb. nov. Int J Syst Bacteriol 45:139–144Google Scholar
  41. Gerday C, Aittaleb M, Bentahir M, Chessa J-P, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis M-A, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107PubMedCrossRefGoogle Scholar
  42. Gomez-Gil B, Roque A, Rotllant G, Peinado L, Romalde JL, Doce A, Cabanillas-Beltrán H, Chimetto LA, Thompson FL (2011) Photobacterium swingsii sp. nov., isolated from marine organisms. Int J Syst Evol Microbiol 61:315–319PubMedCrossRefGoogle Scholar
  43. Gomez-Gil B, Roque A, Rotllant G, Romalde JL, Doce A, Eggermont M, Defoirdt T (2016) Photobacterium sanguinicancri sp. nov. isolated from marine animals. Antonie Van Leeuwenhoek 109:817–825PubMedCrossRefGoogle Scholar
  44. Goodell KH, Jordan MR, Graham R, Cassidy C, Nasraway SA (2004) Rapidly advancing necrotizing fasciitis caused by Photobacterium (Vibrio) damsela: a hyperaggressive variant. Crit Care Med 32:278–281PubMedCrossRefGoogle Scholar
  45. Gray LD, Kreger AS (1985) Purification and characterization of an extracellular cytolysin produced by Vibrio vulnificus. Infect Immun 48:62–72PubMedPubMedCentralGoogle Scholar
  46. Han JY, Kim HK (2011) Transesterification using the cross-linked enzyme aggregate of Photobacterium lipolyticum lipase M37. J Microbiol Biotechnol 21:1159–1165PubMedCrossRefGoogle Scholar
  47. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39:235–251CrossRefGoogle Scholar
  48. Hastings JW, Nealson KH (1981) The symbiotic luminous bacteria. In: Starr IM, Stolp H, Trüper H, Balows A, Schlegel H (eds) The prokaryotes. A handbook on habitats, isolation, and identification of bacteria. Springer-Verlag, Berlin, pp 1322–1345Google Scholar
  49. Hendrie M, Hodgkiss W, Shewan J (1970) The identification, taxonomy and classification of luminous bacteria. Microbiology 62:151–169Google Scholar
  50. Ho LP, Han-You Lin J, Liu HC, Chen HE, Chen TY, Yang HL (2011) Identification of antigens for the development of a subunit vaccine against Photobacterium damselae ssp. piscicida. Fish Shellfish Immunol 30:412–419Google Scholar
  51. Hou YH, Li FC, Wang SJ, Qin S, Wang QF (2008) Intergeneric conjugation in holomycin-producing marine Streptomyces sp. strain M095. Microbiol Res 163:96–104PubMedCrossRefGoogle Scholar
  52. Hundenborn J, Thurig S, Kommerell M, Haag H, Nolte O, Nolte O (2013) Severe wound infection with Photobacterium damselae ssp. damselae and Vibrio harveyi, following a laceration injury in marine environment: a case report and review of the literature. Case Rep Med 2013:610632Google Scholar
  53. Johnson BT (2005) Microtox® acute toxicity test. In: Small-scale freshwater toxicity investigations. Springer-Verlag, Berlin, pp 69–105Google Scholar
  54. Jones BW, Nishiguchi MK (2004) Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes berry (Mollusca: Cephalopoda). Mar Biol 144:1151–1155CrossRefGoogle Scholar
  55. Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470PubMedCrossRefGoogle Scholar
  56. Jung SY, Jung YT, Oh TK, Yoon JH (2007) Photobacterium lutimaris sp. nov., isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol 57:332–336Google Scholar
  57. Kaeding AJ, Ast JC, Pearce MM, Urbanczyk H, Kimura S, Endo H, Nakamura M, Dunlap PV (2007) Phylogenetic diversity and cosymbiosis in the bioluminescent symbioses of Photobacterium mandapamensis. Appl Environ Microbiol 73:3173–3182PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kakizaki E, Takahama K, Seo Y, Kozawa S, Sakai M, Yukawa N (2008) Marine bacteria comprise a possible indicator of drowning in seawater. Forensic Sci Int 176:236–247PubMedCrossRefGoogle Scholar
  59. Kakizaki E, Kozawa S, Sakai M, Yukawa N (2009) Bioluminescent bacteria have potential as a marker of drowning in seawater: two immersed cadavers retrieved near estuaries. Legal Med 11(2):91–96Google Scholar
  60. Kakizaki E, Kozawa S, Imamura N, Uchiyama T, Nishida S, Sakai M, Yukawa N (2011) Detection of marine and freshwater bacterioplankton in immersed victims: post-mortem bacterial invasion does not readily occur. Forensic Sci Int 211:9–18PubMedCrossRefGoogle Scholar
  61. Kakizaki E, Ogura Y, Kozawa S, Nishida S, Uchiyama T, Hayashi T, Yukawa N (2012) Detection of diverse aquatic microbes in blood and organs of drowning victims: first metagenomic approach using high-throughput 454-pyrosequencing. Forensic Sci Int 220:135–146PubMedCrossRefGoogle Scholar
  62. Kato C, Bartlett DH (1997) The molecular biology of barophilic bacteria. Extremophiles 1:111–116PubMedCrossRefGoogle Scholar
  63. Kim YO, Kim KK, Park S, Kang SJ, Lee JH, Lee SJ, Oh TK, Yoon JH (2010) Photobacterium gaetbulicola sp. nov., a lipolytic bacterium isolated from a tidal flat sediment. Int J Syst Evol Microbiol 60:2587–2591Google Scholar
  64. Kimura B, Hokimoto S, Takahashi H, Fujii T (2000) Photobacterium histaminum Okuzumi et al. 1994 is a later subjective synonym of Photobacterium damselae subsp. damselae (Love et al. 1981) Smith et al. 1991. Int J Syst Evol Microbiol 50:1339–1342Google Scholar
  65. Kreger AS (1984) Cytolytic activity and virulence of Vibrio damsela. Infect Immun 44:326–331Google Scholar
  66. Kreger AS, Bernheimer AW, Etkin LA, Daniel LW (1987) Phospholipase D activity of Vibrio damsela cytolysin and its interaction with sheep erythrocytes. Infect Immun 55:3209–3212Google Scholar
  67. Labella A, Berbel C, Manchado M, Castro D, Borrego JJ (2011) Photobacterium damselae subsp. damselae, an emerging pathogen affecting new cultured marine fish species in Southern Spain. In: Aral F (ed) Recent Advances in Fish farms. InTech, pp 136–152Google Scholar
  68. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, DeMaere MZ, Ting L, Ertan H, Johnson J, Ferriera S, Lapidus A, Anderson I, Kyrpides N, Munk AC, Detter C, Han CS, Brown MV, Robb FT, Kjelleberg S, Cavicchioli R (2009) The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci U S A 106:15527–15533PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lauro FM, Eloe-Fadrosh EA, Richter TKS, Vitulo N, Ferriera S, Johnson JH, Bartlett DH (2014) Ecotype diversity and conversion in Photobacterium profundum strains. PLoS One 9:1–10CrossRefGoogle Scholar
  70. Lee K, Ruby E (1994) Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl Environ Microbiol 60:1565–1571PubMedPubMedCentralGoogle Scholar
  71. Li XL, Zhang WH, Wang YD, Dai YJ, Zhang HT, Wang Y, Wang HK, Lu FP (2014) A high-detergent-performance, cold-adapted lipase from Pseudomonas stutzeri PS59 suitable for detergent formulation. J Mol Catal B Enzym 102:16–24CrossRefGoogle Scholar
  72. Lin JW, Chao YF, Weng SF (2001) Riboflavin synthesis genes ribE, ribB, ribH, ribA reside in the lux operon of Photobacterium leiognathi. Biochem Biophys Res Commun 284:587–595PubMedCrossRefGoogle Scholar
  73. Liu Y, Liu L-Z, Song L, Zhou Y-G, Qi F-J, Liu Z-P (2014) Photobacterium aquae sp. nov., isolated from a recirculating mariculture system. Int J Syst Evol Microbiol 64:475–480Google Scholar
  74. Liu F, Liu G, Li F (2016) Characterization of two pathogenic Photobacterium strains isolated from Exopalaemon carinicauda causing mortality of shrimp. Aquaculture 464:129–135CrossRefGoogle Scholar
  75. Lo N, Jin HM, Jeon CO (2014) Photobacterium aestuarii sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 64:625–630Google Scholar
  76. Lucena T, Ruvira MA, Pascual J, Garay E, Carmen Macián M, Arahal DR, Pujalte MJ (2011) Photobacterium aphoticum sp. nov., isolated from coastal water. Int J Syst Evol Microbiol 61:1579–1584PubMedCrossRefGoogle Scholar
  77. Malave-Orengo J, Rubio-Marrero EN, Rios-Velazquez C (2010) Isolation and characterization of bioluminescent bacteria from marine environments of Puerto Rico. Appl Microbiol Microb Biotechnol 1:103–108Google Scholar
  78. Maila MP, Cloete TE (2005) The use of biological activities to monitor the removal of fuel contaminants—perspective for monitoring hydrocarbon contamination: a review. Int Biodeterior Biodegrad 55(1):1–8CrossRefGoogle Scholar
  79. Mansson M, Gram L, Larsen TO (2011a) Production of bioactive secondary metabolites by marine Vibrionaceae. Mar Drugs 9:1440–1468Google Scholar
  80. Mansson M, Nielsen A, Kjærulff L, Gotfredsen C, Wietz M, Ingmer H, Gram L, Larsen T (2011b) Inhibition of virulence gene expression in Staphylococcus aureus by novel depsipeptides from a marine Photobacterium. Mar Drugs 9:2537–2552Google Scholar
  81. Martini S, Al Ali B, Garel M, Nerini D, Grossi V, Pacton M, Casalot L, Cuny P, Tamburini C (2013) Effects of hydrostatic pressure on growth and luminescence of a moderately-piezophilic luminous bacteria Photobacterium phosphoreum ANT-2200. PLoS One 8:1–9Google Scholar
  82. Mathew DC, Mathew GM, Gicana RG, Huang C-C (2015) Genome sequence of Photobacterium halotolerans MELD1, with mercury reductase (merA), isolated from Phragmites australis. Genome Announc 3:e00530–e00515PubMedPubMedCentralCrossRefGoogle Scholar
  83. Moreira APB, Duytschaever G, Chimetto Tonon LA, Fróes AM, de Oliveira LS, Amado Filho G, Francini-Filho RB, De Vos P, Swings J, Thompson CC, Thompson FL (2014) Photobacterium sanctipauli sp. nov. isolated from bleached Madracis decactis (Scleractinia) in the St Peter and St Paul Archipelago, Mid-Atlantic Ridge, Brazil. PeerJ 2:e427Google Scholar
  84. Morii H, Hayashi N, Uramoto K (2003) Cloning and nucleotide sequence analysis of the chloramphenicol resistance gene on conjugative R plasmids from the fish pathogen Photobacterium damselae subsp. piscicida. Dis Aquat Org 53:107–113Google Scholar
  85. Morii H, Bharadwaj MS, Eto N (2004) Cloning and nucleotide sequence analysis of the ampicillin resistance gene on a conjugative R plasmid from the fish pathogen Photobacterium damselae subsp. piscicida. J Aquat Anim Health 16:197–207CrossRefGoogle Scholar
  86. Morris JG, Wilson R, Hollis DG, Weaver RE, Miller HG, Tacket CO, Hickman FW, Blake PA (1982) Illness caused by Vibrio damsela and Vibrio hollisae. Lancet 319:1294–1297CrossRefGoogle Scholar
  87. Nielsen A, Månsson M, Bojer MS, Gram L, Larsen TO, Novick RP, Frees D, Frøkiaer H, Ingmer H, Kaufmann GF (2014) Solonamide B inhibits quorum sensing and reduces Staphylococcus aureus mediated killing of human neutrophils. PLoS One 9:e84992PubMedPubMedCentralCrossRefGoogle Scholar
  88. Nijvipakul S, Wongratana J, Suadee C, Entsch B, Ballou DP, Chaiyen P (2008) LuxG is a functioning flavin reductase for bacterial luminescence. J Bacteriol 190:1531–1538PubMedCrossRefGoogle Scholar
  89. Nogi Y, Masui N, Kato C (1998) Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:1–7PubMedCrossRefGoogle Scholar
  90. Nonaka L, Maruyama F, Miyamoto M, Miyakoshi M, Kurokawa K, Masuda M (2012) Novel conjugative transferable multiple drug resistance plasmid pAQU1 from Photobacterium damselae subsp. damselae isolated from marine aquaculture environment. Microbes Environ 27:263–272PubMedPubMedCentralCrossRefGoogle Scholar
  91. Nunes-Halldorson VDS, Duran NL (2003) Bioluminescent bacteria: lux genes as environmental biosensors. Braz J Microbiol 34:91–96Google Scholar
  92. Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ (2000) Establishment of an animal-bacterial association: recruiting symbiotic Vibrios from the environment. Proc Natl Acad Sci U S A 97:10231–10235PubMedPubMedCentralCrossRefGoogle Scholar
  93. Okada K, Iida T, Kita-Tsukamoto K, Honda T (2005) Vibrios commonly possess two chromosomes. J Bacteriol 187:752–757PubMedPubMedCentralCrossRefGoogle Scholar
  94. Oku N, Kawabata K, Adachi K, Katsuta A, Shizuri Y (2008) Unnarmicins A and C, new antibacterial depsipeptides produced by marine bacterium Photobacterium sp. MBIC06485. J Antibiot 61:11–17PubMedCrossRefGoogle Scholar
  95. Okuzumi M, Hiraishi A, Kobayashi T, Fujii T (1994) Photobacterium histaminum sp. nov., a histamine-producing marine bacterium. Int J Syst Bacteriol 44:631–636Google Scholar
  96. Oliva B, O’Neill A, Wilson JM, O’Hanlon PJ, Chopra I (2001) Antimicrobial properties and mode of action of the pyrrothine holomycin. Antimicrob Agents Chemother 45:532–539PubMedPubMedCentralCrossRefGoogle Scholar
  97. Onarheim AM, Wiik R, Burghardt J, Stackebrandt E (1994) Characterization and identification of two Vibrio species indigenous to the intestine of fish in cold sea water; description of Vibrio iliopiscarius sp. nov. Syst Appl Microbiol 17(3):370–379CrossRefGoogle Scholar
  98. Onwurah INE, Ogugua VN, Onyike NB, Ochonogor AE, Otitoju OF (2007) Crude oil spills in the environment, effects and some innovative clean-up biotechnologies. Int J Environ Res 1:307–320Google Scholar
  99. Orikasa Y, Nishida T, Yamada A, Yu R, Watanabe K, Hase A, Morita N, Okuyama H (2006) Recombinant production of docosahexaenoic acid in a polyketide biosynthesis mode in Escherichia coli. Biotechnol Lett 28:1841–1847PubMedCrossRefGoogle Scholar
  100. Orikasa Y, Tanaka M, Sugihara S, Hori R, Nishida T, Ueno A, Morita N, Yano Y, Yamamoto K, Shibahara A, Hayashi H, Yamada Y, Yamada A, Yu R, Watanabe K, Okuyama H (2009) pfaB products determine the molecular species produced in bacterial polyunsaturated fatty acid biosynthesis. FEMS Microbiol Lett 295:170–176PubMedCrossRefGoogle Scholar
  101. Osorio CR, Juiz-Río S, Lemos ML (2006) A siderophore biosynthesis gene cluster from the fish pathogen Photobacterium damselae subsp. piscicida is structurally and functionally related to the Yersinia high-pathogenicity island. Microbiology 152:3327–3341PubMedCrossRefGoogle Scholar
  102. Osorio CR, Marrero J, Wozniak RAF, Lemos ML, Burrus V, Waldor MK (2008) Genomic and functional analysis of ICEPdaSpa1, a fish-pathogen-derived SXT-related integrating conjugative element that can mobilize a virulence plasmid. J Bacteriol 190:3353–3361PubMedPubMedCentralCrossRefGoogle Scholar
  103. Osorio CR, Rivas AJ, Balado M, Fuentes-Monteverde JC, Rodríguez J, Jiménez C, Lemos ML, Waldor MK (2015) A transmissible plasmid-borne pathogenicity island confers piscibactin biosynthesis in the fish pathogen Photobacterium damselae subsp. piscicida. Appl Environ Microbiol 81:5867–5879PubMedPubMedCentralCrossRefGoogle Scholar
  104. Panda T, Gowrishankar BS (2005) Production and applications of esterases. Appl Microbiol Biotechnol 67:160–169PubMedCrossRefGoogle Scholar
  105. Park YD, Baik KS, Seong CN, Bae KS, Kim S, Chun J (2006) Photobacterium ganghwense sp. nov., a halophilic bacterium isolated from sea water. Int J Syst Evol Microbiol 56:745–749Google Scholar
  106. Phillips T, Liu D, Seech A, Lee H (2000) Monitoring bioremediation in creosote-contaminated soils using chemical analysis and toxicity tests. J Ind Microbiol Biotechnol 24:132–139CrossRefGoogle Scholar
  107. Queck SY, Jameson-Lee M, Villaruz AE, Bach THL, Khan BA, Sturdevant DE, Ricklefs SM, Li M, Otto M (2008) RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell 32:150–158PubMedPubMedCentralCrossRefGoogle Scholar
  108. Raatz SK, Rosenberger TA, Johnson LK, Wolters WW, Burr GS, Picklo MJ (2013) Dose-dependent consumption of farmed atlantic salmon (Salmo salar) increases plasma phospholipid n-3 fatty acids differentially. J Acad Nutr Diet 113:282–287PubMedPubMedCentralCrossRefGoogle Scholar
  109. Reen FJ, Almagro-Moreno S, Ussery D, Boyd EF (2006) The genomic code: inferring Vibrionaceae niche specialization. Nat Rev Microbiol 4:697–704PubMedCrossRefGoogle Scholar
  110. Reichelt JL, Baumann P (1973) Taxonomy of the marine, luminous bacteria. Arch fur Mikrobiol 94:283–330CrossRefGoogle Scholar
  111. Reichelt JL, Baumann P, Baumann L (1976) Study of genetic relationships among marine species of the genera Beneckea and Photobacterium by means of in vitro DNA/DNA hybridization. Arch Microbiol 110:101–120Google Scholar
  112. Richards GP, Watson MA, Crane EJ, Burt IG, Bushek D (2008) Shewanella and Photobacterium spp. in oysters and seawater from the Delaware Bay. Appl Environ Microbiol 74:3323–3327PubMedPubMedCentralCrossRefGoogle Scholar
  113. Rivas R, García-Fraile P, Mateos PF, Martínez-Molina E, Velázquez E (2006) Photobacterium halotolerans sp. nov., isolated from Lake Martel in Spain. Int J Syst Evol Microbiol 56:1067–1071PubMedCrossRefGoogle Scholar
  114. Rivas AJ, Balado M, Lemos ML, Osorio CR (2011) The Photobacterium damselae subsp. damselae hemolysins damselysin and HlyA are encoded within a new virulence plasmid. Infect Immun 79:4617–4627PubMedPubMedCentralCrossRefGoogle Scholar
  115. Rivas AJ, Balado M, Lemos ML, Osorio CR (2013a) Synergistic and additive effects of chromosomal and plasmid-encoded hemolysins contribute to hemolysis and virulence in Photobacterium damselae subsp. damselae. Infect Immun 81:3287–3299PubMedPubMedCentralCrossRefGoogle Scholar
  116. Rivas AJ, Lemos ML, Osorio CR (2013b) Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Front Microbiol 4:1–6CrossRefGoogle Scholar
  117. Romalde JL (2002) Photobacterium damselae subsp. piscicida: an integrated view of a bacterial fish pathogen. Int Microbiol 5:3–9Google Scholar
  118. Roslan NN, Sabri S, Oslan SN, Baharum SN, Leow TC (2016) Complete genome sequence of Photobacterium sp. strain J15, isolated from seawater of southwestern Johor, Malaysia. Genome Announc 4:e00739–e00716Google Scholar
  119. Ruby EG, Greenberg EP, Hastings JW (1980) Planktonic marine luminous bacteria: species distribution in the water column. Appl Environ Microbiol 39:302–306PubMedPubMedCentralGoogle Scholar
  120. Ruby EG, Urbanowski M, Campbell J, Dunn A, Faini M, Gunsalus R, Lostroh P, Lupp C, McCann J, Millikan D, Schaefer A, Stabb E, Stevens A, Visick K, Whistler C, Greenberg EP (2005) Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci U S A 102:3004–3009PubMedPubMedCentralCrossRefGoogle Scholar
  121. Ryu HS, Kim HK, Choi WC, Kim MH, Park SY, Han NS, Oh TK, Lee JK (2006) New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl Microbiol Biotechnol 70:321–326PubMedCrossRefGoogle Scholar
  122. Sasaki A, Ikejima K, Aoki S, Azuma N, Kashimura N, Wada M (2003) Field evidence for bioluminescent signaling in the pony fish, Leiognathus elongatus. Environ Biol Fish 66:307–311CrossRefGoogle Scholar
  123. Sato K, Chino D, Kobayashi T, Obara K, Miyauchi S, Tanaka Y (2013) Selective and potent inhibitory effect of docosahexaenoic acid (DHA) on U46619-induced contraction in rat aorta. J Smooth Muscle Res 49:63–77PubMedPubMedCentralCrossRefGoogle Scholar
  124. Seo HJ, Bae SS, Lee JH, Kim SJ (2005a) Photobacterium frigidiphilum sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. Int J Syst Evol Microbiol 55:1661–1666PubMedCrossRefGoogle Scholar
  125. Seo HJ, Bae SS, Yang SH, Lee JH, Kim SJ (2005b) Photobacterium aplysiae sp. nov., a lipolytic marine bacterium isolated from eggs of the sea hare Aplysia kurodai. Int J Syst Evol Microbiol 55:2293–2296PubMedCrossRefGoogle Scholar
  126. Shakiba MH, Ali MSM, Rahman RNZRA, Salleh AB, Leow TC (2016) Cloning, expression and characterization of a novel cold-adapted GDSL family esterase from Photobacterium sp. strain J15. Extremophiles 20:45–55CrossRefGoogle Scholar
  127. Shen W, Zhu N, Cui J, Wang H, Dang Z, Wu P, Luo Y, Shi C (2016) Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation. Ecotoxicol Environ Saf 124:120–128PubMedCrossRefGoogle Scholar
  128. Shin JH, Shin MG, Suh SP, Ryang DW, Rew JS, Nolte FS (1996) Primary Vibrio damsela septicemia. Clinical Infect Dis 22:856–857Google Scholar
  129. Silva DS, Pereira LMG, Moreira AR, Ferreira-da-Silva F, Brito RM, Faria TQ, Zornetta I, Montecucco C, Oliveira P, Azevedo JE, Pereira PJB, Macedo-Ribeiro S, do Vale A, dos NMS S (2013) The apoptogenic toxin AIP56 is a metalloprotease A-B toxin that cleaves NF-κb P65. PLoS Pathog 9:e1003128PubMedPubMedCentralCrossRefGoogle Scholar
  130. Souto A, Montaos MA, Rivas AJ, Balado M, Osorio CR, Rodríguez J, Lemos ML, Jiménez C (2012) Structure and biosynthetic assembly of piscibactin, a siderophore from Photobacterium damselae subsp. piscicida, predicted from genome analysis. European J Org Chem 5693–5700Google Scholar
  131. Sparks JS, Dunlap PV, Smith WL (2005) Evolution and diversification of a sexually dimorphic luminescent system in ponyfishes (Teleostei: Leiognathidae), including diagnoses for two new genera. Cladistics 21:305–327CrossRefGoogle Scholar
  132. Srinivas TNR, Vijaya Bhaskar Y, Bhumika V, Anil Kumar P (2013) Photobacterium marinum sp. nov., a marine bacterium isolated from a sediment sample from Palk Bay, India. Syst Appl Microbiol 36:160–165Google Scholar
  133. Steinberg SM, Poziomek EJ, Engelmann WH, Rogers KR (1995) A review of environmental applications of bioluminescence measurements. Chemosphere 30:2155–2197CrossRefGoogle Scholar
  134. Sudheesh PS, Al-Ghabshi A, Al-Mazrooei N, Al-Habsi S, Sudheesh PS, Al-Ghabshi A, Al-Mazrooei N, Al-Habsi S (2012) Comparative pathogenomics of bacteria causing infectious diseases in fish. Int J Evol Biol 2012:1–16CrossRefGoogle Scholar
  135. Suzuki A, Goto M (1973) Photolumazines, new naturally occurring inhibitors of riboflavin synthetase. Biochim Biophys Acta 313:229–234PubMedCrossRefGoogle Scholar
  136. Terceti MS, Ogut H, Osorio CR (2016) Photobacterium damselae subsp. damselae, an emerging fish pathogen in the black sea: evidence of a multiclonal origin. Appl Environ Microbiol 82:3736–3745Google Scholar
  137. Thompson FL, Thompson CC, Naser S, Hoste B, Vandemeulebroecke K, Munn C, Bourne D, Swings J (2005) Photobacterium rosenbergii sp. nov. and Enterovibrio coralii sp. nov., Vibrios associated with coral bleaching. Int J Syst Evol Microbiol 55:913–917PubMedCrossRefGoogle Scholar
  138. Tilay A, Annapure U (2012) Novel simplified and rapid method for screening and isolation of polyunsaturated fatty acids producing marine bacteria. Biotechnol Res Int 2012:1–8CrossRefGoogle Scholar
  139. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266PubMedCrossRefGoogle Scholar
  140. Uchiyama T, Kakizaki E, Kozawa S, Nishida S, Imamura N, Yukawa N (2012) A new molecular approach to help conclude drowning as a cause of death: Simultaneous detection of eight bacterioplankton species using real-time PCR assays with TaqMan probes. Forensic Sci Int 222:11–26PubMedCrossRefGoogle Scholar
  141. Urakawa H, Kita-Tsukamoto K, Ohwada K (1999) Reassessment of the taxonomic position of Vibrio iliopiscarius (Onarheim et al. 1994) and proposal for Photobacterium iliopiscarium comb. nov. Int J Syst Bacteriol 49:257–260PubMedCrossRefGoogle Scholar
  142. Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57:2823–2829Google Scholar
  143. Urbanczyk H, Ast JC, Dunlap PV (2011a) Phylogeny, genomics, and symbiosis of Photobacterium. FEMS Microbiol Rev 35:324–342PubMedCrossRefGoogle Scholar
  144. Urbanczyk H, Ogura Y, Hendry TA, Gould AL, Kiwaki N, Atkinson JT, Hayashi T, Dunlap PV (2011b) Genome sequence of Photobacterium mandapamensis strain svers.1.1, the bioluminescent symbiont of the cardinal fish Siphamia versicolor. J Bacteriol 193:3144–3145PubMedPubMedCentralCrossRefGoogle Scholar
  145. Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461PubMedCrossRefGoogle Scholar
  146. Wang R, Feng J, Su Y, Ye L, Wang J (2013) Studies on the isolation of Photobacterium damselae subsp. piscicida from diseased golden pompano (Trachinotus ovatus Linnaeus) and antibacterial agents sensitivity. Vet Microbiol 162:957–963PubMedCrossRefGoogle Scholar
  147. Wietz M, Mansson M, Gotfredsen CH, Larsen TO, Gram L (2010) Antibacterial compounds from marine Vibrionaceae isolated on a global expedition. Mar Drugs 8:2946–2960PubMedPubMedCentralCrossRefGoogle Scholar
  148. Xie CH, Yokota A (2004) Transfer of Hyphomicrobium indicum to the genus Photobacterium as Photobacterium indicum comb. nov. Int J Syst Evol Microbiol 54:2113–2116PubMedCrossRefGoogle Scholar
  149. Yaacob MA, Hasan WANW, Ali MSM, Rahman RNZRA, Salleh AB, Basri M, Leow TC (2014) Characterisation and molecular dynamic simulations of J15 asparaginase from Photobacterium sp. strain J15. Acta Biochim Pol 61:745–752PubMedGoogle Scholar
  150. Yang KS, Sohn JH, Kim HK (2009) Catalytic properties of a lipase from Photobacterium lipolyticum for biodiesel production containing a high methanol concentration. J Biosci Bioeng 107:599–604PubMedCrossRefGoogle Scholar
  151. Yoon JH, Lee JK, Kim YO, Oh TK (2005) Photobacterium lipolyticum sp. nov., a bacterium with lipolytic activity isolated from the Yellow Sea in Korea. Int J Syst Evol Microbiol 55:335–339Google Scholar
  152. Yoshikawa K, Takadera T, Adachi K, Nishijima M, Sano H (1997) Korormicin, a novel antibiotic specifically active against marine gram-negative bacteria, produced by a marine bacterium. J Antibiot (Tokyo) 50:949–953CrossRefGoogle Scholar
  153. Yoshizawa S, Wada M, Kita-Tsukamoto K, Yokota A, Kogure K (2009) Photobacterium aquimaris sp. nov., a luminous marine bacterium isolated from seawater. Int J Syst Evol Microbiol 59:1438–1442PubMedCrossRefGoogle Scholar
  154. Zhang S-D, Barbe V, Garel M, Zhang W-J, Chen H, Santini C-L, Murat D, Jing H, Zhao Y, Lajus A, Martini S, Pradel N, Tamburini C, Wu L-F (2014) Genome sequence of luminous piezophile Photobacterium phosphoreum ANT-2200. Genome Announc 2:9–10Google Scholar
  155. Zulyniak MA, Perreault M, Gerling C, Spriet LL, Mutch DM (2013) Fish oil supplementation alters circulating eicosanoid concentrations in young healthy men. Metabolism 62:1107–1113PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ibrahim Musa Moi
    • 1
    • 2
  • Noordiyanah Nadhirah Roslan
    • 1
  • Adam Thean Chor Leow
    • 1
    • 3
  • Mohd Shukuri Mohamad Ali
    • 1
    • 4
  • Raja Noor Zaliha Raja Abd. Rahman
    • 1
    • 5
  • Azam Rahimpour
    • 6
  • Suriana Sabri
    • 1
    • 5
    Email author
  1. 1.Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of MicrobiologyBauchi State University GadauBauchiNigeria
  3. 3.Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Department of Biochemistry, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangMalaysia
  5. 5.Department of Microbiology, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangMalaysia
  6. 6.Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations