Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 13, pp 5333–5340 | Cite as

Evidence for the formation of ScbR/ScbR2 heterodimers and identification of one of the regulatory targets in Streptomyces coelicolor

  • Xiao Li
  • Juan Wang
  • Mingxin Shi
  • Weishan Wang
  • Christophe Corre
  • Keqian YangEmail author
Applied genetics and molecular biotechnology

Abstract

The homologous transcriptional regulators ScbR and ScbR2 have previously been identified as γ-butyrolactone (GBL) and antibiotic receptors, respectively. They regulate diverse physiological processes in Streptomyces coelicolor in response to GBL and antibiotic signals. In this study, ScbR and ScbR2 proteins were shown to interact using a bacterial two-hybrid system where adenylate cyclase activity was reconstituted in Escherichia coli BTH101. These ScbR/ScbR2 interactions in S. coelicolor were then demonstrated by co-immunoprecipitation. The ScbR/ScbR2 heterodimer was shown to co-exist with their ScbR and ScbR2 respective homodimers. When potential operator targets in S. coelicolor were investigated, the heterodimer was found to bind in the promoter region of sco5158, which however was not a target for ScbR or ScbR2 homodimers. These results revealed a new mechanism of regulation by ScbR and ScbR2 in S. coelicolor.

Keywords

ScbR ScbR2 Protein interaction Heterodimer sco5158 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 31570031) and by the UK Biotechnology and Biological Sciences Research Council Grant BB/M022765/1. We thank Professor Mervyn Bibb (John Innes Centre) for providing plasmid pIJ10500 and Professor Emmanuelle Bouveret (Aix-Marseille University) for providing plasmids pKT25linker and pUT18Clinker and Dr. Keqiang Fan and Jinmin Gao for the help in figure processing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

253_2017_8275_MOESM1_ESM.pdf (557 kb)
ESM 1 (PDF 557 kb)

References

  1. Ahn SK, Cuthbertson L, Nodwell JR (2012) Genome context as a predictive tool for identifying regulatory targets of the TetR family transcriptional regulators. PLoS One 7:e50562. doi: 10.1371/journal.pone.0050562 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akpe San Roman S, Facey PD, Fernandez-Martinez L, Rodriguez C, Vallin C, Del Sol R, Dyson P (2010) A heterodimer of EsxA and EsxB is involved in sporulation and is secreted by a type VII secretion system in Streptomyces coelicolor. Microbiology 156:1719–1729. doi: 10.1099/mic.0.037069-0 CrossRefPubMedGoogle Scholar
  3. Al-Bassam MM, Bibb MJ, Bush MJ, Chandra G, Buttner MJ (2014) Response regulator heterodimer formation controls a key stage in Streptomyces development. PLoS Genet 10:e1004554. doi: 10.1371/journal.pgen.1004554 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. doi: 10.1093/nar/gkp335 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Battesti A, Bouveret E (2012) The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 58:325–334. doi: 10.1016/j.ymeth.2012.07.018 CrossRefPubMedGoogle Scholar
  6. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147.doi:http://www.nature.com/nature/journal/v417/n6885/suppinfo/417141a_S1.html
  7. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058. doi: 10.1016/j.cell.2007.11.028 CrossRefPubMedGoogle Scholar
  8. Clark LA, Boriack-Sjodin PA, Eldredge J, Fitch C, Friedman B, Hanf KJ, Jarpe M, Liparoto SF, Li Y, Lugovskoy A, Miller S, Rushe M, Sherman W, Simon K, Van Vlijmen H (2006) Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 15:949–960. doi: 10.1110/ps.052030506 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gao Y, Wang R, Lai L (2004) Structure-based method for analyzing protein-protein interfaces. J Mol Model 10:44–54. doi: 10.1007/s00894-003-0168-3 CrossRefPubMedGoogle Scholar
  10. Gottelt M, Kol S, Gomez-Escribano JP, Bibb M, Takano E (2010) Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology 156:2343–2353. doi: 10.1099/mic.0.038281-0 CrossRefPubMedGoogle Scholar
  11. Hillen W, Berens C (1994) Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu Rev Microbiol 48:345–369. doi: 10.1146/annurev.mi.48.100194.002021 CrossRefPubMedGoogle Scholar
  12. Hinrichs W, Kisker C, Duvel M, Muller A, Tovar K, Hillen W, Saenger W (1994) Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 264:418–420CrossRefPubMedGoogle Scholar
  13. Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150:2795–2806. doi: 10.1099/mic.0.27181-0 CrossRefPubMedGoogle Scholar
  14. Karimova G, Pidoux J, Ullmann A, Ladant D (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756Google Scholar
  15. Kieser T, Bibb, M.J., Buttner, M.J., Chater, K.F. & Hopwood, D.A. (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich, U.K.Google Scholar
  16. Kisker C, Hinrichs W, Tovar K, Hillen W, Saenger W (1995) The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J Mol Biol 247:260–280CrossRefPubMedGoogle Scholar
  17. Kortemme T, Joachimiak LA, Bullock AN, Schuler AD, Stoddard BL, Baker D (2004) Computational redesign of protein-protein interaction specificity. Nat Struct Mol Biol 11:371–379. doi: 10.1038/nsmb749 CrossRefPubMedGoogle Scholar
  18. Kurushima J, Kuwae A, Abe A (2012) Iron starvation regulates the type III secretion system in Bordetella bronchiseptica. Microbiol Immunol 56:356–362. doi: 10.1111/j.1348-0421.2012.00442.x CrossRefPubMedGoogle Scholar
  19. Li X, Wang J, Li S, Ji J, Wang W, Yang K (2015) ScbR- and ScbR2-mediated signal transduction networks coordinate complex physiological responses in Streptomyces coelicolor. Sci Rep 5:14831. doi: 10.1038/srep14831 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Liu C, Qi X, Zhao Q, Yu J (2013a) Characterization and functional analysis of the potato pollen-specific microtubule-associated protein SBgLR in tobacco. PLoS One 8:e60543. doi: 10.1371/journal.pone.0060543 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Liu G, Chater KF, Chandra G, Niu G, Tan H (2013b) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77:112–143. doi: 10.1128/MMBR.00054-12 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Molle V, Buttner MJ (2000) Different alleles of the response regulator gene bldM arrest Streptomyces coelicolor development at distinct stages. Mol Microbiol 36:1265–1278CrossRefPubMedGoogle Scholar
  23. Morimoto T, Kaito T, Matsuo Y, Sugiura T, Kashii M, Makino T, Iwasaki M, Yoshikawa H (2015) The bone morphogenetic protein-2/7 heterodimer is a stronger inducer of bone regeneration than the individual homodimers in a rat spinal fusion model. Spine J 15:1379–1390. doi: 10.1016/j.spinee.2015.02.034 CrossRefPubMedGoogle Scholar
  24. Natsume R, Takeshita R, Sugiyama M, Ohnishi Y, Senda T, Horinouchi S (2003) Crystallization of CprB, an autoregulator-receptor protein from Streptomyces coelicolor A3(2). Acta Crystallogr D Biol Crystallogr 59:2313–2315CrossRefPubMedGoogle Scholar
  25. O’Rourke S, Wietzorrek A, Fowler K, Corre C, Challis GL, Chater KF (2009) Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production in Streptomyces coelicolor. Mol Microbiol 71:763–778. doi: 10.1111/j.1365-2958.2008.06560.x CrossRefPubMedGoogle Scholar
  26. Parmentier M (2015) GPCRs: heterodimer-specific signaling. Nat Chem Biol 11:244–245. doi: 10.1038/nchembio.1772 CrossRefPubMedGoogle Scholar
  27. Pullan ST, Chandra G, Bibb MJ, Merrick M (2011) Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics 12:175. doi: 10.1186/1471-2164-12-175 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Romero-Rodriguez A, Robledo-Casados I, Sanchez S (2015) An overview on transcriptional regulators in Streptomyces. Biochim Biophys Acta 1849:1017–1039. doi: 10.1016/j.bbagrm.2015.06.007 CrossRefPubMedGoogle Scholar
  29. Stiebritz MT, Wengrzik S, Klein DL, Richter JP, Srebrzynski A, Weiler S, Muller YA (2010) Computational design of a chain-specific tetracycline repressor heterodimer. J Mol Biol 403:371–385. doi: 10.1016/j.jmb.2010.07.055 CrossRefPubMedGoogle Scholar
  30. Takano E, Chakraburtty R, Nihira T, Yamada Y, Calasso M (2001) A complex role for the γ-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 41:1015–1028CrossRefPubMedGoogle Scholar
  31. Takano E, Kinoshita H, Mersinias V, Bucca G, Hotchkiss G, Nihira T, Smith CP, Bibb M, Wohlleben W, Chater K (2005) A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol 56:465–479. doi: 10.1111/j.1365-2958.2005.04543.x CrossRefPubMedGoogle Scholar
  32. Tian Y, Fowler K, Findlay K, Tan H, Chater KF (2007) An unusual response regulator influences sporulation at early and late stages in Streptomyces coelicolor. J Bacteriol 189:2873–2885. doi: 10.1128/jb.01615-06 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wang J, Wang W, Wang L, Zhang G, Fan K, Tan H, Yang K (2011) A novel role of ‘pseudo’ γ-butyrolactone receptors in controlling gamma-butyrolactone biosynthesis in Streptomyces. Mol Microbiol 82:236–250. doi: 10.1111/j.1365-2958.2011.07811.x CrossRefPubMedGoogle Scholar
  34. Wang W, Ji J, Li X, Wang J, Li S, Pan G, Fan K, Yang K (2014) Angucyclines as signals modulate the behaviors of Streptomyces coelicolor. Proc Natl Acad Sci U S A 111:5688–5693. doi: 10.1073/pnas.1324253111 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Xu G, Wang J, Wang L, Tian X, Yang H, Fan K, Yang K, Tan H (2010) “Pseudo” γ-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem 285:27440–27448. doi: 10.1074/jbc.M110.143081 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiao Li
    • 1
  • Juan Wang
    • 1
  • Mingxin Shi
    • 1
  • Weishan Wang
    • 1
  • Christophe Corre
    • 2
  • Keqian Yang
    • 1
    Email author
  1. 1.State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Department of Chemistry and School of Life SciencesUniversity of WarwickCoventryUK

Personalised recommendations