Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 11, pp 4447–4458 | Cite as

Identification of a polysaccharide produced by the pyruvate overproducer Candida glabrata CCTCC M202019

  • Zhengshan Luo
  • Song Liu
  • Guocheng Du
  • Jingwen ZhouEmail author
  • Jian ChenEmail author
Biotechnological products and process engineering

Abstract

Candida glabrata has great potential for the accumulation of pyruvate as a preferred strain in pyruvate production by fermentation. However, its substrate conversion rate is relatively low. In this study, a novel polysaccharide containing α-1,4-glucosidic bonds was observed accidentally in screening a high-titer pyruvate strain by atmospheric and room temperature plasma mutagenesis of C. glabrata. Chemical analysis of the partially purified polysaccharide S4-C10 showed the main components were 1.2% (w/w) protein and 94.2% (w/w) total sugar. Fourier transform infrared and molecular mass distribution analysis indicated that the main component (PSG-2) of S4-C10 was a small molecular homogeneous protein-bound polysaccharide. Monosaccharide analysis of PSG-2 showed it consisted of glucose, mannose, and fructose. By optimizing the vitamin mix content, 77.6 g L−1 S4-C10 polysaccharide could be obtained after 72 h fermentation at 30 °C in 500-mL flasks. RT-qPCR analysis showed that transcriptional level of some key genes related to polysaccharide biosynthesis was upregulated compared to that of wild-type strain. By knocking out two most significantly upregulated genes, CAGL0H02695g and CAGL0K10626g, in the wild-type strain, the pyruvate consumption rate was significantly reduced in late pyruvate fermentation phase, while the titer of polysaccharides was reduced by 18.0%. Besides the potential applications of the novel identified polysaccharide, this study provided clues for increasing the conversion ratio of glucose to pyruvate in C. glabrata by further decreasing the accumulation of polysaccharides.

Keywords

Torulopsis glabrata Organic acids α-1,4-glucosidic bonds Protein-bound polysaccharide Glycogen synthase gene CAGL0H02695g and CAGL0K10626g 

Notes

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (973 Program, 2013CB733602), the National High Technology Research and Development Program of China (863 Program, 2015AA021003), the Author of National Excellent Doctoral Dissertation of PR China (FANEDD, 201256), and the 111 Project (111-2-06).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

253_2017_8245_MOESM1_ESM.pdf (274 kb)
ESM 1 (PDF 273 kb).

References

  1. Caldorera-Moore M, Peppas NA (2009) Micro- and nanotechnologies for intelligent and responsive biomaterial-based medical systems. Adv Drug Deliver Rev 61:1391–1401. doi: 10.1016/j.addr.2009.09.002 CrossRefGoogle Scholar
  2. Cardoso MJ, Costa RR, Mano JF (2016) Marine origin polysaccharides in drug delivery systems. MAR DRUGS 14. doi: 10.3390/md14020034
  3. Chen J, Liu L-M, Li H-Z, Du G-C, Li Y (2005) Enhancement of pyruvate production by Torulopsis glabrata through supplement of oxaloacetate as carbon source. Biotechnol Bioproc E 10:136–141CrossRefGoogle Scholar
  4. Chen L, Wang W, Zhu Q, Du F (2010) Biosynthesis mechanisms of bacterial polysaccharide—a review. Wei sheng wu xue bao = Acta Microbiol Sin 50:1583–1589Google Scholar
  5. Chen Y, Xie MY, Nie SP, Li C, Wang YX (2008) Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem 107:231–241. doi: 10.1016/j.foodchem.2007.08.021 CrossRefGoogle Scholar
  6. Chien MY, Chen LC, Chen YC, Sheu MT, Tsai YC, Ho HO, Su CH, Liu DZ (2015) Mycelial mattress from a sporangia formation-delayed mutant of Rhizopus stolonifer as wound healing-enhancing biomaterial. PLoS One 10. doi: 10.1371/journal.pone.0134090
  7. DeAngelis PL (2012) Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow. Appl Microbiol Biot 94:295–305. doi: 10.1007/s00253-011-3801-6 CrossRefGoogle Scholar
  8. Deng SB, Bai RB, Hu XM, Luo Q (2003) Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Appl Microbiol Biot 60:588–593. doi: 10.1007/s00253-002-1159-5 CrossRefGoogle Scholar
  9. Dermlim W, Prasertsan P, Doelle H (1999) Screening and characterization of bioflocculant produced by isolated Klebsiella sp. Appl Microbiol Biot 52:698–703CrossRefGoogle Scholar
  10. Farhadi E, Kobarfard F, Shirazi FH (2016) FTIR biospectroscopy investigation on cisplatin cytotoxicity in three pairs of sensitive and resistant cell line. Iran J Pharm Res 15:213–220PubMedPubMedCentralGoogle Scholar
  11. Gnanadhas DP, Elango M, Ben Thomas M, Gopalan J, Chakravortty D (2015) Remotely triggered micro-shock wave responsive drug delivery system for resolving diabetic wound infection and controlling blood sugar levels. RSC Adv 5:13234–13238. doi: 10.1039/c4ra15270k CrossRefGoogle Scholar
  12. Gong WX, Wang SG, Sun XF, Liu XW, Yue QY, Gao BY (2008) Bioflocculant production by culture of Serratia ficaria and its application in wastewater treatment. Bioresource Technol 99:4668–4674. doi: 10.1016/j.biortech.2007.09.077 CrossRefGoogle Scholar
  13. Guo H, Liu P, Madzak C, Du G, Zhou J, Chen J (2015) Identification and application of keto acids transporters in Yarrowia lipolytica. Sci Rep-UK 5. doi: 10.1038/srep08138
  14. Hovgaard L, Brondsted H (1996) Current applications of polysaccharides in colon targeting. Crit Rev Ther Drug 13:185–223CrossRefGoogle Scholar
  15. Jia N, Ding MZ, Du J, Pan CH, Tian G, Lang JD, Fang JH, Gao F, Yuan YJ (2016) Insights into mutualism mechanism and versatile metabolism of Ketogulonicigenium vulgare Hbe602 based on comparative genomics and metabolomics studies. Sci Rep-UK 6:8. doi: 10.1038/srep23068 CrossRefGoogle Scholar
  16. Le C, Kunacheva C, Stuckey DC (2016) “Protein” measurement in biological wastewater treatment systems: a critical evaluation. Environ Sci Technol 50:3074–3081. doi: 10.1021/acs.est.5b05261 CrossRefPubMedGoogle Scholar
  17. Lelandais G, Tanty V, Geneix C, Etchebest C, Jacq C, Devaux F (2008) Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata. Genome Biol 9:40. doi: 10.1186/gb-2008-9-11-r164 CrossRefGoogle Scholar
  18. Li SB, Chen XL, Liu LM, Chen J (2016) Pyruvate production in Candida glabrata: manipulation and optimization of physiological function. Crit Rev Biotechnol 36:1–10. doi: 10.3109/07388551.2013.811636 CrossRefPubMedGoogle Scholar
  19. Li Y, Chen J, Lun SY, Rui XS (2001) Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels. Appl Microbiol Biot 55:680–685CrossRefGoogle Scholar
  20. Li QQ, Skinner J, Bennett JE (2012) Evaluation of reference genes for real-time quantitative PCR studies in Candida glabrata following azole treatment. BMC Mol Biol 13:13. doi: 10.1186/1471-2199-13-22 CrossRefGoogle Scholar
  21. Liu LM, Li Y, Li HZ, Chen J (2004) Manipulating the pyruvate dehydrogenase bypass of a multi-vitamin auxotrophic yeast Torulopsis glabrata enhanced pyruvate production. Lett Appl Microbiol 39:199–206. doi: 10.1111/j.1472-765X.2004.01563.x CrossRefPubMedGoogle Scholar
  22. Luo Z, Chen L, Chen C, Zhang W, Liu M, Han Y, Zhou J (2014) Production and characteristics of a bioflocculant by Klebsiella pneumoniae YZ-6 isolated from human saliva. Appl Biochem Biotech 172:1282–1292. doi: 10.1007/s12010-013-0601-8 CrossRefGoogle Scholar
  23. Luo Z, Zeng W, Du G, Liu S, Fang F, Zhou J, Chen J (2017) A high-throughput screening procedure for enhancing pyruvate production in Candida glabrata by random mutagenesis. Bioproc Biosyst Eng. doi: 10.1007/s00449-017-1734-x Google Scholar
  24. Manivasagan P, Kim S-K (2014) Extracellular polysaccharides produced by marine bacteria. Adv Food Nutr Res 72:79–94. doi: 10.1016/b978-0-12-800269-8.00005-1 CrossRefPubMedGoogle Scholar
  25. Matte A, Forsberg CW (1992) Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fibrobacter succinogenes S85. Appl Environ Microb 58:157–168Google Scholar
  26. Moscovici M (2015) Present and future medical applications of microbial exopolysaccharides. Front Microbiol 6. doi: 10.3389/fmicb.2015.01017
  27. Nichifor M, Mocanu G (2006) Polysaccharide-drug conjugates as controlled drug delivery systems. In: Marchessault RH, Ravenelle F, Zhu XX (eds) Polysaccharides for drug delivery and pharmaceutical applications, vol 934. Acs Symposium Series. pp 289–303Google Scholar
  28. Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015. doi: 10.3390/ijms131114002 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Osinska-Jaroszuk M, Jarosz-Wilkolazka A, Jaroszuk-Scisel J, Szalapata K, Nowak A, Jaszek M, Ozimek E, Majewska M (2015) Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World J Microb Biot 31:1823–1844. doi: 10.1007/s11274-015-1937-8 CrossRefGoogle Scholar
  30. Pal D, Tripathi A, Shukla A, Gupta KR, Keshav A (2015) Reactive extraction of pyruvic acid using tri-n-octylamine diluted in decanol/kerosene: equilibrium and effect of temperature. J Chem Eng Data 60:860–869. doi: 10.1021/je500964e CrossRefGoogle Scholar
  31. Petri DFS (2015) Xanthan gum: a versatile biopolymer for biomedical and technological applications. J Appl Polym Sci 132. doi: 10.1002/app.42035
  32. Qin Y, Johnson CH, Liu LM, Chen JA (2011) Introduction of heterogeneous NADH reoxidation pathways into Torulopsis glabrata significantly increases pyruvate production efficiency. Korean J Chem Eng 28:1078–1084. doi: 10.1007/s11814-010-0483-1 CrossRefGoogle Scholar
  33. Rossouw D, Naes T, Bauer FF (2008) Linking gene regulation and the exo-metabolome: a comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast. BMC Genomics 9:18. doi: 10.1186/1471-2164-9-530 CrossRefGoogle Scholar
  34. Vazquez JA, Blanco M, Fraguas J, Pastrana L, Perez-Martin R (2016) Optimisation of the extraction and purification of chondroitin sulphate from head by-products of Prionace glauca by environmental friendly processes. Foo Chem 198:28–35. doi: 10.1016/j.foodchem.2015.10.087 CrossRefGoogle Scholar
  35. Wang QH, He P, Lu DJ, Shen A, Jiang N (2005) Metabolic engineering of Torulopsis glabrata for improved pyruvate production. Enzyme Microb Tech 36:832–839. doi: 10.1016/j.enzmictec.2005.01.015 CrossRefGoogle Scholar
  36. Wu J, Chen X, Cai L, Tang L, Liu L (2015) Transcription factors Asg1p and Hal9p regulate pH homeostasis in Candida glabrata. Front Microbiol 6. doi: 10.3389/fmicb.2015.00843
  37. Xu XF, Gao CX, Liu ZM, Wu J, Han J, Yan MH, Wu ZJ (2016) Characterization of the levan produced by Paenibacillus bovis sp nov BD3526 and its immunological activity. Carbohydr Polym 144:178–186. doi: 10.1016/j.carbpol.2016.02.049 CrossRefPubMedGoogle Scholar
  38. Xu YP, Li FL, Lv L, Li TT, Zhou X, Deng CX, Guan KL, Lei QY, Xiong Y (2014) Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase. Cancer Res 74:3630–3642. doi: 10.1158/0008-5472.can-13-3615 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Xu N, Liu LM, Zou W, Liu J, Hua Q, Chen J (2013) Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata. Mol BioSyst 9:205–216. doi: 10.1039/c2mb25311a CrossRefPubMedGoogle Scholar
  40. Xu P, Qiu JH, Gao C, Ma CQ (2008) Biotechnological routes to pyruvate production. J Biosci Bioeng 105:169–175. doi: 10.1263/jbb.105.169 CrossRefPubMedGoogle Scholar
  41. Yoshimura T, Shibata N, Hamano Y, Yamanaka K (2015) Heterologous production of hyaluronic acid in an epsilon-poly-l-lysine producer, Streptomyces albulus. Appl Environ Microb 81:3631–3640. doi: 10.1128/aem.00269-15 CrossRefGoogle Scholar
  42. Zeng W, Du G, Chen J, Li J, Zhou JA (2017) High-throughput screening procedure for enhancing α-ketoglutaric acid production in Yarrowia lipolytica by random mutagenesis. Process Biochem. doi: 10.1016/j.procbio.2015.06.011 Google Scholar
  43. Zhou J, Dong Z, Liu L, Du G, Chen J (2009) A reusable method for construction of non-marker large fragment deletion yeast auxotroph strains: a practice in Torulopsis glabrata. J Microbiol Methods 76:70–74. doi: 10.1016/j.mimet.2008.09.011
  44. Zhou J, Huang L, Liu L, Chen J (2009) Enhancement of pyruvate productivity by inducible expression of a F0F1-ATPase inhibitor INH1 in Torulopsis glabrata CCTCC M202019. J Biotechnol 144:120–126. doi: 10.1016/j.jbiotec.2009.09.005

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan UniversityWuxiChina
  2. 2.Synergetic Innovation Center of Food Safety and NutritionWuxiChina

Personalised recommendations