Applied Microbiology and Biotechnology

, Volume 101, Issue 12, pp 5081–5088 | Cite as

Transcriptomic profiling and its implications for the H2 production of a non-methanogen deficient in the frhAGB-encoding hydrogenase

  • Seong Hyuk Lee
  • Min-Sik Kim
  • Yun Jae Kim
  • Tae Wan Kim
  • Sung Gyun KangEmail author
  • Hyun Sook LeeEmail author
Applied microbial and cell physiology


The F420-reducing hydrogenase of methanogens functions in methanogenesis by providing reduced coenzyme F420 (F420H2) as an electron donor. In non-methanogens, however, their physiological function has not been identified yet. In this study, we constructed an ΔfrhA mutant, whose frhA gene encoding the hydrogenase α subunit was deleted, in the non-methanogenic Thermococcus onnurineus NA1 as a model organism. There was no significant difference in the formate-dependent growth between the mutant and the wild-type strains. Interestingly, the mutation in the frhA gene affected the expression of genes involved in various cellular functions such as H2 oxidation, chemotactic signal transduction, and carbon monoxide (CO) metabolism. Among these genes, the CO oxidation gene cluster, enabling CO-dependent growth and H2 production, showed a 2.8- to 7.0-fold upregulation by microarray-based whole transcriptome expression profiling. The levels of proteins produced by this gene cluster were also significantly increased not only under the formate condition but also under the CO condition. In a controlled bioreactor, where 100% CO was continuously fed, the ΔfrhA mutant exhibited significant increases in cell growth (2.8-fold) and H2 production (3.4-fold). These findings strongly imply that this hydrogenase is functional in non-methanogens and is related to various cellular metabolic processes through an unidentified mechanism. An understanding of the mechanism by which the frhA gene deletion affected the expression of other genes will provide insights that can be applied to the development of strategies for the enhancement of H2 production using CO as a substrate.


frhAGB-encoding hydrogenase Thermococcus onnurineus NA1 Carbon monoxide (CO) H2 production Transcriptome 



We thank Dr. Jeong Ho Jeon and Tae-Jun Yang for the skilled technical assistance.

Compliance with ethical standards


This study was funded by the KIOST in-house program (PE99514), C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning in the Republic of Korea (2015M3D3A1A01064884), and the Development of Technology for Biohydrogen Production Using the Hyperthermophilic Archaea program of the Ministry of Oceans and Fisheries in the Republic of Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2017_8234_MOESM1_ESM.doc (926 kb)
ESM 1 (DOC 926 kb)


  1. Fulda M, Heinz E, Wolter FP (1994) The fadD gene of Escherichia coli K12 is located close to rnd at 39.6 min of the chromosomal map and is a new member of the AMP-binding protein family. Mol Gen Genet 242:241–249. doi: 10.1007/BF00280412 CrossRefPubMedGoogle Scholar
  2. van Haaster DJ, Silva PJ, Hagedoorn P-L, Jongejan JA, Hagen WR (2008) Reinvestigation of the steady-state kinetics and physiological function of the soluble NiFe-hydrogenase I of Pyrococcus furiosus. J Bacteriol 190:1584–1587. doi: 10.1128/JB.01562-07 CrossRefPubMedGoogle Scholar
  3. Hausinger RP, Orme-Johnson WH, Walsh C (1985) Factor 390 chromophores: phosphodiester between AMP or GMP and methanogen factor 420. Biochemistry 24:1629–1633. doi: 10.1021/bi00328a010 CrossRefPubMedGoogle Scholar
  4. Hendrickson EL, Leigh JA (2008) Roles of coenzyme F420-reducing hydrogenases and hydrogen- and F420-dependent methylenetetrahydromethanopterin dehydrogenases in reduction of F420 and production of hydrogen during methanogenesis. J Bacteriol 190:4818–4821. doi: 10.1128/JB.00255-08 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Hofmann K, Bucher P, Falquet L, Bairoch A (1999) The PROSITE database, its status in 1999. Nucleic Acids Res 27:215–219. doi: 10.1093/nar/27.1.215 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Holden JF, Takai K, Summit M, Bolton S, Zyskowski J, Baross JA (2001) Diversity among three novel groups of hyperthermophilic deep-sea Thermococcus species from three sites in the northeastern Pacific Ocean. FEMS Microbiol Ecol 36:51–60. doi: 10.1016/S0168-6496(01)00118-0 CrossRefPubMedGoogle Scholar
  7. Jeon JH, Lim JK, Kim M-S, Yang T-J, Lee S-H, Bae SS, Kim YJ, Lee SH, Lee J-H, Kang SG, Lee HS (2015) Characterization of the frhAGB-encoding hydrogenase from a non-methanogenic hyperthermophilic archaeon. Extremophiles 19:109–118. doi: 10.1007/s00792-014-0689-y CrossRefPubMedGoogle Scholar
  8. Kanai T, Ito S, Imanaka T (2003) Characterization of a cytosolic NiFe-hydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:1705–1711. doi: 10.1128/JB.185.5.1705-1711.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kanai T, Matsuoka R, Beppu H, Nakajima A, Okada Y, Atomi H, Imanaka T (2011) Distinct physiological roles of the three [NiFe]-hydrogenase orthologs in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 193:3109–3116. doi: 10.1128/JB.01072-10 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kengen SW, von den Hoff HW, Keltjens JT, van der Drift C, Vogels GD (1991) F390 synthetase and F390 hydrolase from Methanobacterium thermoautotrophicum (strain delta H). Biofactors 3:61–65PubMedGoogle Scholar
  11. Kim YJ, Lee HS, Kim ES, Bae SS, Lim JK, Matsumi R, Lebedinsky AV, Sokolova TG, Kozhevnikova DA, Cha S-S, Kim S-J, Kwon KK, Imanaka T, Atomi H, Bonch-Osmolovskaya EA, Lee J-H, Kang SG (2010) Formate-driven growth coupled with H2 production. Nature 467:352–355. doi: 10.1038/nature09375 CrossRefPubMedGoogle Scholar
  12. Kim M-S, Bae SS, Kim YJ, Kim TW, Lim JK, Lee SH, Choi AR, Jeon JH, Lee J-H, Lee HS, Kang SG (2013) CO-dependent H2 production by genetically engineered Thermococcus onnurineus NA1. Appl Environ Microbiol 79:2048–2053. doi: 10.1128/AEM.03298-12 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kim M-S, Choi AR, Lee SH, Jung H-C, Bae SS, Yang T-J, Jeon JH, Lim JK, Youn H, Kim TW, Lee HS, Kang SG (2015) A novel CO-responsive transcriptional regulator and enhanced H2 production by an engineered Thermococcus onnurineus NA1 strain. Appl Environ Microbiol 81:1708–1714. doi: 10.1128/AEM.03019-14 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lee HS, Kang SG, Bae SS, Lim JK, Cho Y, Kim YJ, Jeon JH, Cha S-S, Kwon KK, Kim H-T, Park C-J, Lee H-W, Il KS, Chun J, Colwell RR, Kim S-J, Lee J-H (2008) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 190:7491–7499. doi: 10.1128/JB.00746-08 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lee SH, Kim MS, Bae SS, Choi AR, Lee JW, Kim TW, Lee JH, Lee HS, Kang SG (2014) Comparison of CO-dependent H2 production with strong promoters in Thermococcus onnurineus NA1. Appl Microbiol Biotechnol 98:979–986. doi: 10.1007/s00253-013-5448-y CrossRefPubMedGoogle Scholar
  16. Lee SH, Kim M-S, Jung HC, Lee J, Lee J-H, Lee HS, Kang SG (2015) Screening of a novel strong promoter by RNA sequencing and its application to H2 production in a hyperthermophilic archaeon. Appl Microbiol Biotechnol 99:4085–4092. doi: 10.1007/s00253-015-6444-1 CrossRefPubMedGoogle Scholar
  17. Lee SH, Kim M-S, Lee J-H, Kim TW, Bae SS, Lee S-M, Jung HC, Yang T-J, Choi AR, Cho Y-J, Lee J-H, Kwon KK, Lee HS, Kang SG (2016) Adaptive engineering of a hyperthermophilic archaeon on CO and discovering the underlying mechanism by multi-omics analysis. Sci Rep 6:22896. doi: 10.1038/srep22896 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lipscomb GL, Stirrett K, Schut GJ, Yang F, Jenney FE, Scott RA, Adams MW, Westpheling J (2011) Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl Environ Microbiol 77:2232–2238. doi: 10.1128/AEM.02624-10 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ma K, Adams MW (2001) Hydrogenases I and II from Pyrococcus furiosus. Methods Enzymol 331:208–216. doi: 10.1016/S0076-6879(01)31059-5 CrossRefPubMedGoogle Scholar
  20. Ma K, Schicho RN, Kelly RM, Adams MW (1993) Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc Natl Acad Sci U S A 90:5341–5344CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ma K, Weiss R, Adams MW (2000) Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. J Bacteriol 182:1864–1871. doi: 10.1128/JB.182.7.1864-1871.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226. doi: 10.1093/nar/gku1221 CrossRefPubMedGoogle Scholar
  23. Matsumi R, Manabe K, Fukui T, Atomi H, Imanaka T (2007) Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance. J Bacteriol 189:2683–2691. doi: 10.1128/JB.01692-06 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Moon YJ, Kwon J, Yun SH, Lim HL, Kim MS, Kang SG, Lee JH, Choi JS, Kim SI, Chung YH (2012) Proteome analyses of hydrogen-producing hyperthermophilic archaeon Thermococcus onnurineus NA1 in different one-carbon substrate culture conditions. Mol Cell Proteomics 11:M111.015420. doi: 10.1074/mcp.M111.015420 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Santangelo TJ, Čuboňová L, Reeve JN (2011) Deletion of alternative pathways for reductant recycling in Thermococcus kodakarensis increases hydrogen production. Mol Microbiol 81:897–911. doi: 10.1111/j.1365-2958.2011.07734.x CrossRefPubMedPubMedCentralGoogle Scholar
  26. Schut GJ, Boyd ES, Peters JW, Adams MWW (2013) The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol Rev 37:182–203. doi: 10.1111/j.1574-6976.2012.00346.x CrossRefPubMedGoogle Scholar
  27. Thorgersen MP, Stirrett K, Scott RA, Adams MWW (2012) Mechanism of oxygen detoxification by the surprisingly oxygen-tolerant hyperthermophilic archaeon, Pyrococcus furiosus. Proc Natl Acad Sci U S A 109:18547–18552. doi: 10.1073/pnas.1208605109 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Vermeij P, Detmers FJ, Broers FJ, Keltjens JT, Van der Drift C (1994) Purification and characterization of coenzyme F390 synthetase from Methanobacterium thermoautotrophicum (strain delta H). Eur J Biochem 226:185–191. doi: 10.1111/j.1432-1033.1994.0t185.x CrossRefPubMedGoogle Scholar
  29. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501. doi: 10.1111/j.1574-6976.2001.tb00587.x CrossRefPubMedGoogle Scholar
  30. Wolf YI, Makarova KS, Yutin N, Koonin EV (2012) Updated clusters of orthologous genes for archaea: a complex ancestor of the archaea and the byways of horizontal gene transfer. Biol Direct 7:46. doi: 10.1186/1745-6150-7-46 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Seong Hyuk Lee
    • 1
  • Min-Sik Kim
    • 1
    • 2
  • Yun Jae Kim
    • 1
    • 3
  • Tae Wan Kim
    • 1
    • 3
  • Sung Gyun Kang
    • 1
    • 3
    Email author
  • Hyun Sook Lee
    • 1
    • 3
    Email author
  1. 1.Korea Institute of Ocean Science and TechnologyAnsanRepublic of Korea
  2. 2.Biomass and Waste Energy LaboratoryKorea Institute of Energy ResearchDaejeonRepublic of Korea
  3. 3.Department of Marine BiotechnologyKorea University of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations