Applied Microbiology and Biotechnology

, Volume 101, Issue 12, pp 4883–4893

De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae

Biotechnological products and process engineering


The production of natural aroma compounds is an expanding field within the branch of white biotechnology. Three aromatic compounds of interest are cinnamaldehyde, the typical cinnamon aroma that has applications in agriculture and medical sciences, as well as cinnamyl alcohol and hydrocinnamyl alcohol, which have applications in the cosmetic industry. Current production methods, which rely on extraction from plant materials or chemical synthesis, are associated with drawbacks regarding scalability, production time, and environmental impact. These considerations make the development of a sustainable microbial-based production highly desirable. Through steps of rational metabolic engineering, we engineered the yeast Saccharomyces cerevisiae as a microbial host to produce trans-cinnamic acid derivatives cinnamaldehyde, cinnamyl alcohol, and hydrocinnamyl alcohol, from externally added trans-cinnamic acid or de novo from glucose as a carbon source. We show that the desired products can be de novo synthesized in S. cerevisiae via the heterologous overexpression of the genes encoding phenylalanine ammonia lyase 2 from Arabidopsis thaliana (AtPAL2), aryl carboxylic acid reductase (acar) from Nocardia sp., and phosphopantetheinyl transferase (entD) from Escherichia coli, together with endogenous alcohol dehydrogenases. This study provides a proof of concept and a strain that can be further optimized for production of high-value aromatic compounds.


trans-cinnamic acid Bioconversion Cinnamaldehyde Cinnamyl alcohol Hydrocinnamyl alcohol 

Supplementary material

253_2017_8220_MOESM1_ESM.pdf (722 kb)
ESM 1(PDF 721 kb)

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Molecular BiosciencesGoethe University FrankfurtFrankfurt am MainGermany
  2. 2.Department of Biotechnology and BiosciencesUniversity of Milano—BicoccaMilanItaly
  3. 3.Terranol A/S, c/o Section for Sustainable BiotechnologyAalborg UniversityCopenhagenDenmark
  4. 4.Metabolic ExplorerBiopôle Clermont LimagneSaint-BeauzireFrance

Personalised recommendations