Applied Microbiology and Biotechnology

, Volume 101, Issue 12, pp 4883–4893 | Cite as

De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae

Biotechnological products and process engineering

Abstract

The production of natural aroma compounds is an expanding field within the branch of white biotechnology. Three aromatic compounds of interest are cinnamaldehyde, the typical cinnamon aroma that has applications in agriculture and medical sciences, as well as cinnamyl alcohol and hydrocinnamyl alcohol, which have applications in the cosmetic industry. Current production methods, which rely on extraction from plant materials or chemical synthesis, are associated with drawbacks regarding scalability, production time, and environmental impact. These considerations make the development of a sustainable microbial-based production highly desirable. Through steps of rational metabolic engineering, we engineered the yeast Saccharomyces cerevisiae as a microbial host to produce trans-cinnamic acid derivatives cinnamaldehyde, cinnamyl alcohol, and hydrocinnamyl alcohol, from externally added trans-cinnamic acid or de novo from glucose as a carbon source. We show that the desired products can be de novo synthesized in S. cerevisiae via the heterologous overexpression of the genes encoding phenylalanine ammonia lyase 2 from Arabidopsis thaliana (AtPAL2), aryl carboxylic acid reductase (acar) from Nocardia sp., and phosphopantetheinyl transferase (entD) from Escherichia coli, together with endogenous alcohol dehydrogenases. This study provides a proof of concept and a strain that can be further optimized for production of high-value aromatic compounds.

Keywords

trans-cinnamic acid Bioconversion Cinnamaldehyde Cinnamyl alcohol Hydrocinnamyl alcohol 

Supplementary material

253_2017_8220_MOESM1_ESM.pdf (722 kb)
ESM 1(PDF 721 kb)

References

  1. Bang HB, Lee YH, Kim SC, Sung CK, Jeong KJ (2016) Metabolic engineering of Escherichia coli for the production of cinnamaldehyde. Microb Cell Factories 15:16. doi:10.1186/s12934-016-0415-9 CrossRefGoogle Scholar
  2. Becker J, Armstrong G, Vandermerwe M, Lambrechts M, Vivier M, Pretorius I (2003) Metabolic engineering of for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4:79–85. doi:10.1016/s1567-1356(03)00157-0 CrossRefPubMedGoogle Scholar
  3. Bruder S, Boles E (2016) Improvement of the yeast based (R)-phenylacetylcarbinol production process via reduction of by-product formation. Biochem Eng J 120:103–112. doi:10.1016/j.bej.2016.09.021 CrossRefGoogle Scholar
  4. Bruder S, Reifenrath M, Thomik T, Boles E, Herzog K (2016) Parallelised online biomass monitoring in shake flasks enables efficient strain and carbon source dependent growth characterisation of Saccharomyces cerevisiae. Microb Cell Factories 15:127. doi:10.1186/s12934-016-0526-3 CrossRefGoogle Scholar
  5. Cochrane FC, Davin LB, Lewis NG (2004) The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65:1557–1564. doi:10.1016/j.phytochem.2004.05.006 CrossRefPubMedGoogle Scholar
  6. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145CrossRefPubMedPubMedCentralGoogle Scholar
  7. Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E (2014) Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci U S A 111:5159–5164. doi:10.1073/pnas.1323464111 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34. doi:10.1038/nprot.2007.13 CrossRefPubMedGoogle Scholar
  9. Gold N, Gowen C, Lussier F-X, Cautha S, Mahadevan R, Martin V (2015) Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Microb Cell Factories 14:73. doi:10.1186/s12934-015-0252-2 CrossRefGoogle Scholar
  10. Hanci D, Altun H, Cetinkaya EA, Muluk NB, Cengiz BP, Cingi C (2016) Cinnamaldehyde is an effective anti-inflammatory agent for treatment of allergic rhinitis in a rat model. Int J Pediatr Otorhi 84:81–87. doi:10.1016/j.ijporl.2016.03.001 CrossRefGoogle Scholar
  11. Hansen EH, Moller BL, Kock GR, Bunner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 75:2765–2774. doi:10.1128/AEM.02681-08 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hauf J, Zimmermann FK, Mueller S (2000) Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzym Microb Technol 26:688–698CrossRefGoogle Scholar
  13. Kim B, Cho BR, Hahn JS (2013) Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol Bioeng 111:115–124. doi:10.1002/bit.24993/abstract CrossRefPubMedGoogle Scholar
  14. Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, van Maris AJ, Pronk JT, Daran JM (2012) De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Factories 11:155. doi:10.1186/1475-2859-11-155 CrossRefGoogle Scholar
  15. Larroy C, Fernandéz MR, Gonzales E, Parés X, Biosca JA (2002) Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene. Biochem J 361:163–172CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lehka BJ, Eichenberger M, Bjørn-Yoshimoto WE, Garcia Vanegas K, Buijs N, Jensen NB, Dyekjær JD, Jenssen H, Simon E, Naesby M (2017) Improving heterologous production of phenylpropanoids in Saccharomyces cerevisiae by tackling an unwanted side reaction of Tsc13, an endogenous double-bond reductase. FEMS Yeast Res 17:fox004. doi:10.1093/femsyr/fox004 CrossRefGoogle Scholar
  17. Li M, Kildegaard KR, Chen Y, Rodriguez A, Borodina I, Nielsen J (2015) De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng 32:1–11. doi:10.1016/j.ymben.2015.08.007 CrossRefPubMedGoogle Scholar
  18. Liu ZL (2011) Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90:809–825. doi:10.1007/s00253-011-3167-9 CrossRefPubMedGoogle Scholar
  19. Luttik MA, Vuralhan Z, Suir E, Braus GH, Pronk JT, Daran JM (2008) Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng 10:141–153. doi:10.1016/j.ymben.2008.02.002 CrossRefPubMedGoogle Scholar
  20. Martani F, Fossati T, Posteri R, Signori L, Porro D, Branduardi P (2013) Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and L-ascorbic acid-producing strains. Yeast 30:365–378. doi:10.1002/yea.2969 CrossRefPubMedGoogle Scholar
  21. McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13:544–554. doi:10.1016/j.ymben.2011.06.005 CrossRefPubMedGoogle Scholar
  22. McKenna R, Thompson B, Pugh S, Nielsen DR (2014) Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb Cell Factories 13:123. doi:10.1186/s12934-014-0123-2 CrossRefGoogle Scholar
  23. Miyakoshi S, Negishi Y, Sekiya Y, Nakajima S (2016) Improved conversion of cinnamaldehyde derivatives to diol compounds via a pyruvate decarboxylase-dependent mechanism in budding yeast. J Biosci Bioeng 121:265–267. doi:10.1016/j.jbiosc.2015.06.013 CrossRefPubMedGoogle Scholar
  24. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768. doi:10.1146/annurev.micro.56.012302.161038 CrossRefPubMedGoogle Scholar
  25. Richmond HH (1947) Preparation of cinnamaldehyde. Patent no. US 2529186 AGoogle Scholar
  26. Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J (2015) Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31:181–188. doi:10.1016/j.ymben.2015.08.003 CrossRefPubMedGoogle Scholar
  27. Sambrook J, Russel D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  28. Singh G, Maurya S, DeLampasona MP, Catalan CA (2007) A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem Toxicol 45:1650–1661. doi:10.1016/j.fct.2007.02.031 CrossRefPubMedGoogle Scholar
  29. Steels EL, Learmonth RP, Watson K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140:569–576. doi:10.1099/00221287-140-3-569 CrossRefPubMedGoogle Scholar
  30. Taxis C, Knop M (2006) System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. BioTechniques 40:73–78. doi:10.2144/000112040 CrossRefPubMedGoogle Scholar
  31. Utchariyakiat I, Surassmo S, Jaturanpinyo M, Khuntayaporn P, Chomnawang MT (2016) Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement Altern Med 16:158. doi:10.1186/s12906-016-1134-9 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Vargas-Tah A, Gosset G (2015) Production of cinnamic and p-hydroxycinnamic acids in engineered microbes. Front Bioeng Biotechnol 3:116. doi:10.3389/fbioe.2015.00116 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517. doi:10.1002/yea.320080703 CrossRefPubMedGoogle Scholar
  34. Wang Y, Halls C, Zhang J, Matsuno M, Zhang Y, Yu O (2011) Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 13:455–463. doi:10.1016/j.ymben.2011.04.005 CrossRefPubMedGoogle Scholar
  35. Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1303–1315. doi:10.1007/s00253-010-2707-z CrossRefPubMedGoogle Scholar
  36. Wiedemann B, Boles E (2008) Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol 74:2043–2050. doi:10.1128/AEM.02395-07 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Molecular BiosciencesGoethe University FrankfurtFrankfurt am MainGermany
  2. 2.Department of Biotechnology and BiosciencesUniversity of Milano—BicoccaMilanItaly
  3. 3.Terranol A/S, c/o Section for Sustainable BiotechnologyAalborg UniversityCopenhagenDenmark
  4. 4.Metabolic ExplorerBiopôle Clermont LimagneSaint-BeauzireFrance

Personalised recommendations