Applied Microbiology and Biotechnology

, Volume 101, Issue 10, pp 4201–4213 | Cite as

Mycoepoxydiene suppresses HeLa cell growth by inhibiting glycolysis and the pentose phosphate pathway

  • Kehua Jin
  • Li Li
  • Xihuan Sun
  • Qingyan Xu
  • Siyang Song
  • Yuemao Shen
  • Xianming DengEmail author
Applied genetics and molecular biotechnology


Upregulation of glycolysis and the pentose phosphate pathway (PPP) is a major characteristic of the metabolic reprogramming of cancer and provides cancer cells with energy and vital metabolites to support their rapid proliferation. Targeting glycolysis and the PPP has emerged as a promising antitumor therapeutic strategy. Marine natural products are attractive sources for anticancer therapeutics, as evidenced by the antitumor drug Yondelis. Mycoepoxydiene (MED) is a natural product isolated from a marine fungus that has shown promising inhibitory efficacy against HeLa cells in vitro. We used a proteomic approach with two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry to explore the cellular targets of MED and to unravel the molecular mechanisms underlying the antitumor activity of MED in HeLa cells. Our proteomic data showed that triosephosphate isomerase (TPI) and 6-phosphogluconolactonase (PGLS), which participate in glycolysis and the PPP, respectively, were significantly downregulated by MED treatment. Functional studies revealed that the expression levels of several other enzymes involved in glycolysis and the PPP, including hexokinase 2 (HK2), phosphofructokinase 1 (PFKM), aldolase A (ALDOA), enolase 1 (ENO1), lactate dehydrogenase A (LDHA), and glucose-6-phosphate dehydrogenase (G6PD), were also reduced in a dose-dependent manner. Moreover, the LDHA and G6PD enzymatic activities in HeLa cells were inhibited by MED, and overexpression of these downregulated enzymes rescued HeLa cells from the growth inhibition induced by MED. Our data suggest that MED suppresses HeLa cell growth by inhibiting glycolysis and the PPP, which provides a mechanistic basis for the development of new therapeutics against cervical cancer.


Mycoepoxydiene Growth suppression Glycolysis Pentose phosphate pathway 



This work was supported by grants from the National Natural Science Foundation of China (Nos. 81422045, U1405223, 21272195, 81661138005, and 21402165); the China’s 1000 Young Talents Program; the Fundamental Research Funds for the Central Universities of China (Nos. 2013121032 and 20720160064); and Xiamen Southern Oceanographic Center (14GYY002NF02).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2017_8187_MOESM1_ESM.pdf (778 kb)
ESM 1 (PDF 778 kb)


  1. Abbate F, Casini A, Owa T, Scozzafava A, Supuran CT (2004) Carbonic anhydrase inhibitors: E7070, a sulfonamide anticancer agent, potently inhibits cytosolic isozymes I and II, and transmembrane, tumor-associated isozyme IX. Bioorg Med Chem Lett 14:217–223. doi: 10.1016/j.bmcl.2003.09.062 CrossRefPubMedGoogle Scholar
  2. Arseneault R, Chien A, Newington JT, Rappon T, Harris R, Cumming RC (2013) Attenuation of LDHA expression in cancer cells leads to redox-dependent alterations in cytoskeletal structure and cell migration. Cancer Lett 338:255–266. doi: 10.1016/j.canlet.2013.03.034 CrossRefPubMedGoogle Scholar
  3. Bolin DC, Carlton WW (1996) The effect of 6-aminonicotinamide on testicular development in the rat. Vet Hum Toxicol 38:85–88PubMedGoogle Scholar
  4. Budihardjo II, Walker DL, Svingen PA, Buckwalter CA, Desnoyers S, Eckdahl S, Shah GM, Poirier GG, Reid JM, Ames MM, Kaufmann SH (1998) 6-aminonicotinamide sensitizes human tumor cell lines to cisplatin. Clin Cancer Res 4:117–130PubMedGoogle Scholar
  5. Cai P, McPhail AT, Krainer E, Katz B, Pearce C, Boros C, Caceres B, Smith D, Houck DR (1999) Mycoepoxydiene represents a novel class of fungal metabolites. Tetrahedron Lett 40:1479–1482. doi: 10.1002/chin.199920228 CrossRefGoogle Scholar
  6. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333. doi: 10.1002/elps.200305844 CrossRefPubMedGoogle Scholar
  7. Chen Q, Chen TH, Li WJ, Zhang W, Zhu JW, Li Y, Huang YJ, Shen YM, Yu CD (2012b) Mycoepoxydiene inhibits lipopolysaccharide-induced inflammatory responses through the of TRAF6 polyubiquitination. PLoS One 7:e44890. doi: 10.1371/journal.pone.0044890 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen M, Huang SL, Zhang XQ, Zhang B, Zhu H, Yang VW, Zou XP (2012a) Reversal effects of pantoprazole on multidrug resistance in human gastric adenocarcinoma cells by down-regulating the V-ATPases/mTOR/HIF-1α/P-gp and MRP1 signaling pathway in vitro and in vivo. J Cell Biochem 113:2474–2487. doi: 10.1002/jcb.24122 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chiche J, Ilc K, Laferriere J, Trottier E, Dayan F, Mazure NM, Brahimi-Horn MC, Pouyssegur J (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69:358–368. doi: 10.1158/0008-5472.CAN-08-2470 CrossRefPubMedGoogle Scholar
  10. Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J, Lane A, Trent JO, Chesney J (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 7:110–120. doi: 10.1158/1535-7163.MCT-07-0482 CrossRefPubMedGoogle Scholar
  11. Dang CV, Hamaker M, Sun P, Le A, Gao P (2011) Therapeutic targeting of cancer cell metabolism. J Mol Med 89:205–212. doi: 10.1007/s00109-011-0730-x CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fan J, Hitosugi T, Chung TW, Xie J, Ge Q, Gu TL, Polakiewicz RD, Chen GZ, Boggon TJ, Lonial S, Khuri FR, Kang S, Chen J (2011) Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells. Mol Cell Biol 31:4938–4950. doi: 10.1128/MCB.06120-11 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434. doi: 10.1016/j.ccr.2006.04.023 CrossRefPubMedGoogle Scholar
  14. Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G (2013) Metabolic targets for cancer therapy. Nat Rev Drug Discov 12:829–846. doi: 10.1038/nrc2817 CrossRefPubMedGoogle Scholar
  15. Giammarioli AM, Gambardella L, Barbati C, Pietraforte D, Tinari A, Alberton M, Gnessi L, Griffin RJ, Minetti M, Malorni W (2012) Differential effects of the glycolysis inhibitor 2-deoxy-D-glucose on the activity of pro-apoptotic agents in metastatic melanoma cells, and induction of a cytoprotective autophagic response. Int J Cancer 131:E337–E347. doi: 10.1002/ijc.26420 CrossRefPubMedGoogle Scholar
  16. Hinton A, Sennoune SR, Bond S, Fang M, Reuveni M, Sahagian GG, Jay D, Martinez-Zaguilan R, Forgac M (2009) Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem 284:16400–16408. doi: 10.1074/jbc.M901201200 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jalving M, Gietema JA, Lefrandt JD, de Jong S, Reyners AK, Gans RO, de Vries EG (2010) Metformin: taking away the candy for cancer? Eur J Cancer 46:2369–2380. doi: 10.1016/j.ejca.2010.06.012 CrossRefPubMedGoogle Scholar
  18. Jiang P, Du WJ, Wang XW, Mancuso A, Gao XA, Wu MA, Yang XL (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316. doi: 10.1038/ncb2172 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ko YH, Pedersen PL, Geschwind JF (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 173:83–91CrossRefPubMedGoogle Scholar
  20. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324:269–275. doi: 10.1016/j.bbrc.2004.09.047 CrossRefPubMedGoogle Scholar
  21. Koukourakis MI, Giatromanolaki A, Winter S, Leek R, Sivridis E, Harris AL (2009) Lactate dehydrogenase 5 expression in squamous cell head and neck cancer relates to prognosis following radical or postoperative radiotherapy. Oncology 77:285–292. doi: 10.1159/000259260 CrossRefPubMedGoogle Scholar
  22. Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 107:2037–2042. doi: 10.1073/pnas.0914433107 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li WJ, Li M, Su XH, Qin LP, Miao MM, Yu CD, Shen YM, Luo Q, Chen Q (2014) Mycoepoxydiene induces apoptosis and inhibits TPA-induced invasion in human cholangiocarcinoma cells via blocking NF-kappa B pathway. Biochimie 101C:183–191. doi: 10.1016/j.biochi.2014.01.012 CrossRefGoogle Scholar
  24. Li L, Fath MA, Scarbrough PM, Watson WH, Spitz DR (2015) Combined inhibition of glycolysis, the pentose cycle, and thioredoxin metabolism selectively increases cytotoxicity and oxidative stress in human breast and prostate cancer. Redox Biol 4:127–135. doi: 10.1016/j.redox.2014.12.001 CrossRefPubMedGoogle Scholar
  25. Lin X, Huang Y, Fang M, Wang J, Zheng Z, Su W (2005) Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol Lett 251:53–58. doi: 10.1016/j.femsle.2005.07.025 CrossRefPubMedGoogle Scholar
  26. Liu C, Li W, Zhang X, Zhang N, He S, Huang J, Ge Y, Liu M (2014) Knockdown of endogenous myostatin promotes sheep myoblast proliferation. In Vitro Cell Dev Biol : Animal 50:94–102. doi: 10.1007/s11626-013-9689-y CrossRefGoogle Scholar
  27. Madhok BM, Yeluri S, Perry SL, Hughes TA, Jayne DG (2011) Targeting glucose metabolism an emerging concept for anticancer therapy. Am J Clin Oncol-Canc 34:628–635. doi: 10.1097/COC.0b013e3181e84dec CrossRefGoogle Scholar
  28. Mathupala SP, Rempel A, Pedersen PL (2001) Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J Biol Chem 276:43407–43412. doi: 10.1074/jbc.M108181200 CrossRefPubMedGoogle Scholar
  29. Matsuyama S, Reed JC (2000) Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ 7:1155–1165. doi: 10.1038/sj.cdd.4400779 CrossRefPubMedGoogle Scholar
  30. Miskimins WK, Ahn HJ, Kim JY, Ryu S, Jung YS, Choi JY (2014) Synergistic anti-cancer effect of phenformin and oxamate. PLoS One 9:e85576. doi: 10.1371/journal.pone.0085576 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mo XG, Chen QW, Li XS, Zheng MM, Ke DZ, Deng W, Li GQ, Jiang J, Wu ZQ, Wang L, Wang P, Yang Y, Cao GY (2011) Suppression of NHE1 by small interfering RNA inhibits HIF-1α-induced angiogenesis in vitro via modulation of calpain activity. Microvasc Res 81:160–168. doi: 10.1016/j.mvr.2010.12.004 CrossRefPubMedGoogle Scholar
  32. Nilsson C, Kågedal K, Johansson U, Ollinger K (2003) Analysis of cytosolic and lysosomal pH in apoptotic cells by flow cytometry. Methods Cell Sci 25:10Google Scholar
  33. Ortega-Calderón YN, López-Marure R (2014) Dehydroepiandrosterone inhibits proliferation and suppresses migration of human cervical cancer cell lines. Anticancer Res 34:4039–4044PubMedGoogle Scholar
  34. Osawa E, Nakajima A, Yoshida S, Omura M, Nagase H, Ueno N, Wada K, Matsuhashi N, Ochiai M, Nakagama H, Sekihara H (2002) Chemoprevention of precursors to colon cancer by dehydroepiandrosterone (DHEA). Life Sci 70:2623–2630CrossRefPubMedGoogle Scholar
  35. Oudard S, Carpentier A, Banu E, Fauchon F, Celerier D, Poupon MF, Dutrillaux B, Andrieu JM, Delattre JY (2003) Phase II study of lonidamine and diazepam in the treatment of recurrent glioblastoma multiforme. J Neuro-Oncol 63:81–86CrossRefGoogle Scholar
  36. Palmieri D, Fitzgerald D, Shreeve SM, Hua E, Bronder JL, Weil RJ, Davis S, Stark AM, Merino MJ, Kurek R, Mehdorn HM, Davis G, Steinberg SM, Meltzer PS, Aldape K, Steeg PS (2009) Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol Cancer Res 7:1438–1445. doi: 10.1158/1541-7786.MCR-09-0234 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Pan S, World CJ, Kovacs CJ, Berk BC (2009) Glucose 6-phosphate dehydrogenase is regulated through c-Src-mediated tyrosine phosphorylation in endothelial cells. Arterioscler Thromb Vasc Biol 29:895–901. doi: 10.1161/ATVBAHA.109.184812 CrossRefPubMedGoogle Scholar
  38. Patra KC, Hay N (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39:347–354. doi: 10.1016/j.tibs.2014.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646. doi: 10.1038/sj.onc.1209597 CrossRefPubMedGoogle Scholar
  40. Peng SY, Lai PL, Pan HW, Hsiao LP, Hsu HC (2008) Aberrant expression of the glycolytic enzymes aldolase B and type II hexokinase in hepatocellular carcinoma are predictive markers for advanced stage, early recurrence and poor prognosis. Oncol Rep 19:1045–1053PubMedGoogle Scholar
  41. Penkowa M, Quintana A, Carrasco J, Giralt M, Molinero A, Hidalgo J (2004) Metallothionein prevents neurodegeneration and central nervous system cell death after treatment with gliotoxin 6-aminonicotinamide. J Neurosci Res 77:35–53. doi: 10.1002/jnr.20154 CrossRefPubMedGoogle Scholar
  42. Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Rey JM, García-García A (2009) V-ATPase inhibitors and implication in cancer treatment. Cancer Treat Rev 35:707–713. doi: 10.1016/j.ctrv.2009.08.003 CrossRefPubMedGoogle Scholar
  43. Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2:1–18. doi: 10.3389/fphar.2011.00049 CrossRefGoogle Scholar
  44. Qin JZ, Xin H, Nickoloff BJ (2010) 3-bromopyruvate induces necrotic cell death in sensitive melanoma cell lines. Biochem Biophys Res Commun 396:495–500. doi: 10.1016/j.bbrc.2010.04.126 CrossRefPubMedGoogle Scholar
  45. Raez LE, Papadopoulos K, Ricart AD, Chiorean EG, Dipaola RS, Stein MN, Rocha Lima CM, Schlesselman JJ, Tolba K, Langmuir VK, Kroll S, Jung DT, Kurtoglu M, Rosenblatt J, Lampidis TJ (2013) A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 71:523–530. doi: 10.1007/s00280-012-2045-1 CrossRefPubMedGoogle Scholar
  46. Reshkin SJ, Bellizzi A, Cardone RA, Tommasino M, Casavola V, Paradiso A (2003) Paclitaxel induces apoptosis via protein kinase A- and p38 mitogen-activated protein-dependent inhibition of the Na+/H+ exchanger (NHE) NHE isoform 1 in human breast cancer cells. Clin Cancer Res 9:2366–2373PubMedGoogle Scholar
  47. Schwartz AG, Pashko LL (1995) Mechanism of cancer preventive action of DHEA. Role of glucose-6-phosphate dehydrogenase. Ann N Y Acad Sci 774:180–186CrossRefPubMedGoogle Scholar
  48. Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56. doi: 10.1016/j.gde.2009.10.009 CrossRefPubMedGoogle Scholar
  49. Sheng SL, Liu JJ, Dai YH, Sun XG, Xiong XP, Huang G (2012) Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of hum-an hepatocellular carcinoma. FEBS J 279:3898–3910. doi: 10.1111/j.1742-4658.2012.08748.x CrossRefPubMedGoogle Scholar
  50. Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL (2006) HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol: Lung Cell Mol Physiol 291:L941–L949. doi: 10.1152/ajplung.00528.2005 Google Scholar
  51. Somparn P, Hirankarn N, Leelahavanichkul A, Khovidhunkit W, Thongboonkerd V, Avihingsanon Y (2012) Urinary proteomics revealed prostaglandin H(2)D-isomerase, not Zn-α2-glycoprotein, as a biomarker for active lupus nephritis. J Proteome 75:3240–3247. doi: 10.1016/j.jprot.2012.03.034 CrossRefGoogle Scholar
  52. Stein M, Lin H, Jeyamohan C, Dvorzhinski D, Gounder M, Bray K, Eddy S, Goodin S, White E, Dipaola RS (2010) Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate 70:1388–1394. doi: 10.1002/pros.21172 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Su XH, Chen Q, Chen WB, Chen TH, Li WJ, Li Y, Dou XF, Zhang YF, Shen YM, Wu H, Yu CD (2014) Mycoepoxydiene inhibits activation of BV2 microglia stimulated by lipopolysaccharide through suppressing NF-kappa B, ERK 1/2 and toll-like receptor pathways. Int Immunopharmacol 19:88–93. doi: 10.1016/j.intimp.2014.01.004 CrossRefPubMedGoogle Scholar
  54. Supuran CT (2008) Development of small molecule carbonic anhydrase IX inhibitors. BJU Int 101(Suppl 4):39–40. doi: 10.1111/j.1464-410X.2008.07648.x CrossRefPubMedGoogle Scholar
  55. Tian WN, Pignatare JN, Stanton RC (1994) Signal transduction proteins that associate with the platelet-derived growth factor (PDGF) receptor mediate the PDGF-induced release of glucose-6-phosphate dehydrogenase from permeabilized cells. J Biol Chem 269:14798–14805PubMedGoogle Scholar
  56. Vanamala J, Radhakrishnan S, Reddivari L, Bhat VB, Ptitsyn A (2011) Resveratrol suppresses human colon cancer cell proliferation and induces apoptosis via targeting the pentose phosphate and the Talin-FAK signaling pathways—a proteomic approach. Proteome Sci 9:1–11. doi: 10.1186/1477-5956-9-49 CrossRefGoogle Scholar
  57. Varshney R, Adhikari JS, Dwarakanath BS (2003) Contribution of oxidative stress to radiosensitization by a combination of 2-DG and 6-AN in human cancer cell line. Indian J Exp Biol 41:1384–1391PubMedGoogle Scholar
  58. Varshney R, Dwarakanath B, Jain V (2005) Radiosensitization by 6-aminonicotinamide and 2-deoxy-D-glucose in human cancer cells. Int J Radiat Biol 81:397–408. doi: 10.1080/09553000500148590 CrossRefPubMedGoogle Scholar
  59. Wang JF, Zhao BB, Zhang W, Wu XA, Wang RY, Huang YJ, Chen D, Park K, Weimer BC, Shen YM (2010) Mycoepoxydiene, a fungal polyketide, induces cell cycle arrest at the G2/M phase and apoptosis in HeLa cells. Bioorg Med Chem Lett 20:7054–7058. doi: 10.1016/j.bmcl.2010.09.105 CrossRefPubMedGoogle Scholar
  60. Wang JF, Zhao BB, Yi YT, Zhang W, Wu X, Zhang LR, Shen YM (2012) Mycoepoxydiene, a fungal polyketide inhibits MCF-7 cells through simultaneously targeting p53 and NF-kappa B pathways. Biochem Pharmacol 84:891–899. doi: 10.1016/j.bcp.2012.07.004 CrossRefPubMedGoogle Scholar
  61. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wei J, Zhang Y, Luo Y, Wang Z, Bi S, Song D, Dai Y, Wang T, Qiu L, Wen L, Yuan L, Yang JY (2014) Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1-Nrf2, Tgfbeta1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice. Free Radic Biol Med 67:91–102. doi: 10.1016/j.freeradbiomed.2013.10.811 CrossRefPubMedGoogle Scholar
  63. Xia XC, Chen Q, Liu K, Mo PL, Zhu JW, Zhuang MQ, Shen YM, Yu CD (2013) Mycoepoxydiene inhibits antigen-stimulated activation of mast cells and suppresses IgE-mediated anaphylaxis in mice. Int Immunopharmacol 17:336–341. doi: 10.1016/j.intimp.2013.06.029 CrossRefPubMedGoogle Scholar
  64. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:613–621CrossRefPubMedGoogle Scholar
  65. Yao F, Zhao T, Zhong C, Zhu J, Zhao H (2013) LDHA is necessary for the tumorigenicity of esophageal squamous cell carcinoma. Tumor Biol 34:25–31. doi: 10.1007/s13277-012-0506-0 CrossRefGoogle Scholar
  66. Zhang Z, Liew CW, Handy DE, Zhang Y, Leopold JA, Hu J, Guo L, Kulkarni RN, Loscalzo J, Stanton RC (2010) High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis. FASEB J 24:1497–1505. doi: 10.1096/fj.09-136572 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhu JW, Chen Q, Xia XC, Mo PL, Shen YM, Yu CD (2013) Mycoepoxydiene suppresses RANKL-induced osteoclast differentiation and reduces ovariectomy-induced bone loss in mice. Appl Microbiol Biotechnol 97:767–774. doi: 10.1007/s00253-012-4146-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Kehua Jin
    • 1
    • 2
    • 3
  • Li Li
    • 1
    • 2
  • Xihuan Sun
    • 1
    • 2
  • Qingyan Xu
    • 1
    • 2
  • Siyang Song
    • 1
    • 2
  • Yuemao Shen
    • 4
  • Xianming Deng
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
  2. 2.State-Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsXiamen UniversityXiamenChina
  3. 3.School of Basic Medicine SciencesHubei University of Science and TechnologyXianningChina
  4. 4.School of Pharmaceutical SciencesShandong UniversityJinanChina

Personalised recommendations