Applied Microbiology and Biotechnology

, Volume 101, Issue 7, pp 2641–2657 | Cite as

The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms

  • Mattia Pia Arena
  • Vittorio Capozzi
  • Giuseppe Spano
  • Daniela Fiocco


Lactic acid bacteria (LAB) are a heterogeneous group of Gram-positive bacteria that comprise several species which have evolved in close association with humans (food and lifestyle). While their use to ferment food dates back to very ancient times, in the last decades, LAB have attracted much attention for their documented beneficial properties and for potential biomedical applications. Some LAB are commensal that colonize, stably or transiently, host mucosal surfaces, inlcuding the gut, where they may contribute to host health. In this review, we present and discuss the main factors enabling LAB adaptation to such lifestyle, including the gene reprogramming accompanying gut colonization, the specific bacterial components involved in adhesion and interaction with host, and how the gut niche has shaped the genome of intestine-adapted species. Moreover, the capacity of LAB to colonize abiotic surfaces by forming structured communities, i.e., biofilms, is briefly discussed, taking into account the main bacterial and environmental factors involved, particularly in relation to food-related environments. The vast spread of LAB surface-associated communities and the ability to control their occurrence hold great potentials for human health and food safety biotechnologies.


Lactic acid bacteria Biotic and abiotic surfaces Probiotics Biofilm 



This research was partialy supported by the Ministry of Education, University and Research (PON02_00186_2937475) in the framework of the project named Protocolli innovativi per lo sviluppo di alimenti funzionali^ (Pro. Ali. Fun.). Vittorio Capozzi was supported by a grant of the Apulian Region in the framework of “FutureInResearch” programme (practice code 9OJ4W81).

Compliance with ethical standards

This article does not contain any studies with human or animal subjects.

Conflict of interest

The authors declare that they have no competing interests.


  1. Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P (2002) Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43:1–14PubMedCrossRefGoogle Scholar
  2. Adlerberth I, Ahrne S, Johansson ML, Molin G, Hanson LA, Wold AE (1996) A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl Environ Microbiol 62:2244–2251PubMedPubMedCentralGoogle Scholar
  3. Alcántara C, Zúñiga M (2012) Proteomic and transcriptomic analysis of the response to bile stress of Lactobacillus casei BL23. Microbiol 158:1206–1218CrossRefGoogle Scholar
  4. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TR (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. PNAS 102:3906–3912PubMedPubMedCentralCrossRefGoogle Scholar
  5. Àlvarez G, González M, Isabal S, Blanc V, León R (2013) Method to quantify live and dead cells in multi-species oral biofilm by real-time PCR with propidium monoazide. AMB Express 3:1PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anselme K, Davidson P, Popa A, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometer scale. Acta Biomater 6:3824–3846PubMedCrossRefGoogle Scholar
  7. Antikainen J, Kuparinen V, Lähteenmäki K, Korhonen TK (2007) pH dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids. J Bacteriol 189:4539–4543PubMedPubMedCentralCrossRefGoogle Scholar
  8. Aoudia N, Rieu A, Briandet R, Deschamps J, Chluba J, Jego G, Garrido C, Guzzo C (2016) Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiol 53:51–59PubMedCrossRefGoogle Scholar
  9. Arena MP, Russo P, Capozzi V, López P, Fiocco D, Spano G (2014) Probiotic abilities of riboflavin-overproducing Lactobacillus strains: a novel promising application of probiotics. Appl Microbiol Biotechnol 98:7569–7581PubMedCrossRefGoogle Scholar
  10. Arena MP, Caggianiello G, Russo P, Albenzio M, Massa S, Fiocco D, Capozzi V, Spano G (2015) Functional starters for functional yogurt. Foods 4:15–33PubMedPubMedCentralCrossRefGoogle Scholar
  11. Arroyo-Lopez FN, Bautista-Gallego J, Dominguez-Manzano J, Romero-Gil V, Rodriguez-Gómez F, García-García P, Garrido-Fernández A, Jiménez-Díaz R (2012) Formation of lactic acid bacteria-yeasts communities on the olive surface during Spanish-style Manzanilla fermentations. Food Microbiol 32:295–301PubMedCrossRefGoogle Scholar
  12. Avall-Jääskeläinen S, Lindholm A, Palva A (2003) Surface display of the receptor-binding region of the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci with the ability to adhere to intestinal epithelial cells. Appl Environ Microbiol 69:2230–2236PubMedPubMedCentralCrossRefGoogle Scholar
  13. Azcarate-Peril MA, Altermann E, Goh YJ, Tallon R, Sanozky-Dawes RB, Pfeiler EA, O’Flaherty S, Logan Buck B, Dobson A, Duong T, Miller MJ, Barrangou R, Klaenhammer TR (2008) Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol 74:4610–46257PubMedPubMedCentralCrossRefGoogle Scholar
  14. Banas JA, Vickerman MM (2003) Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med 14:89–99PubMedCrossRefGoogle Scholar
  15. Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B, Kanth A, Dahlberg S, Fernebro J, Moschioni M, Masignani V, Hultenby K, Taddei AR, Beiter K, Wartha F, von Euler A, Covacci A, Holden DW, Normark S, Rappuoli R, Henriques-Normark B (2006) A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci U S A 103:2857–2862PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246PubMedCrossRefGoogle Scholar
  17. Becerra JE, Yebra MJ, Monedero V (2015) An l-fucose operon in the probiotic Lactobacillus rhamnosus GG is involved in adaptation to gastrointestinal conditions. Appl Environ Microbiol 81:3880–3888PubMedPubMedCentralCrossRefGoogle Scholar
  18. Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environment Microbiol 72:1729–1738CrossRefGoogle Scholar
  19. Bergonzelli GE, Granato D, Pridmore RD, Marvin-Guy LF, Donnicola D, Corthésy-Theulaz IE (2006) GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 74:425–434PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bermúdez-Humarán LG, Aubry C, Motta JP, Deraison C, Steidler L, Vergnolle N, Chatel JM, Langella P (2013) Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol 16:278–283PubMedCrossRefGoogle Scholar
  21. Boekhorst J, Helmer Q, Kleerebezem M, Siezen RJ (2006) Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiol 152:273–280CrossRefGoogle Scholar
  22. van Bokhorst-van de Veen H, Smelt MJ, Wels M, van Hijum SA, de Vos P, Kleerebezem M, Bron PA (2013) Genotypic adaptations associated with prolonged persistence of Lactobacillus plantarum in the murine digestive tract. Biotechnol J 8:895–904PubMedCrossRefGoogle Scholar
  23. Bove P, Gallone A, Russo P, Capozzi V, Albenzio M, Spano G, Fiocco D (2012) Probiotic features of Lactobacillus plantarum mutant strains. Appl Microbiol Biotechno l96:431–441CrossRefGoogle Scholar
  24. Bove P, Russo P, Capozzi V, Gallone A, Spano G, Fiocco D (2013) Lactobacillus plantarum passage through an oro-gastro-intestinal tract simulator: carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiol Res 168:351–359PubMedCrossRefGoogle Scholar
  25. Breshears LM, Edwards VL, Ravel J, Peterson ML (2015) Lactobacillus crispatus inhibits growth of Gardnerella vaginalis and Neisseria gonorrhoeae on a porcine vaginal mucosa model. BMC Microbiol 15:276–288PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F (2011) Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27:1017–1032PubMedCrossRefGoogle Scholar
  27. Bron PA, Grangette C, Mercenier A, De Vos WM, Kleerebezem M (2004a) Identification of Lactobacillus plantarum genes that are induced in the gastrointestinal tract of mice. J Bacteriol 186:5721–5729PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bron PA, Marco M, Hoffer SM, Van Mullekom E, de Vos WM, Kleerebezem M (2004b) Genetic characterization of the bile salt response in Lactobacillus plantarum and analysis of responsive promoters in vitro and in situ in the gastrointestinal tract. J Bacteriol 186:7829–7835PubMedPubMedCentralCrossRefGoogle Scholar
  29. Bron PA, Molenaar D, de Vos WM, Kleerebezem M (2006) DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. J Appl Microbiol 100:728–738PubMedCrossRefGoogle Scholar
  30. Buck BL, Altermann E, Svingerud T, Klaenhammer TR (2005a) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71:8344–8351PubMedPubMedCentralCrossRefGoogle Scholar
  31. Caggianiello G, Kleerebezem M, Spano G (2016) Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl Microbiol Biotechnol 100:3877–3886PubMedCrossRefGoogle Scholar
  32. Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL (2009) Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome Biol Evol 1:239–257PubMedPubMedCentralCrossRefGoogle Scholar
  33. Call EK, Klaenhammer TR (2013) Relevance and application of sortase and sortase-dependent proteins in lactic acid bacteria. Front Microbiol 4:73–83PubMedPubMedCentralGoogle Scholar
  34. Call EK, Goh YJ, Selle K, Klaenhammer TR, O’Flaherty S (2015) Sortase-deficient lactobacilli: effect on immunomodulation and gut retention. Microbiol 161:311–321CrossRefGoogle Scholar
  35. Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533–8554PubMedCrossRefGoogle Scholar
  36. Candela M, Centanni M, Fiori J, Biagi E, Turroni S, Orrico C, Bergmann S, Hammerschmidt S, Brigidi P (2010) DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts. Microbiol 156:1609–1618CrossRefGoogle Scholar
  37. Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28:281–370PubMedCrossRefGoogle Scholar
  38. Castaldo C, Vastano V, Siciliano RA, Candela M, Vici M, Muscariello L, Marasco R, Sacco M (2009) Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein. Microb Cell Factories 8:14–24CrossRefGoogle Scholar
  39. Cazzaniga G, Ottobelli M, Ionescu A, Garcia-Godoy F, Brambilla E (2015) Surface properties of resin-based composite materials and biofilm formation: A review of the current literature. Am J Dent 28Google Scholar
  40. Ceapa C, Davids M, Ritari J, Lambert J, Wels M, Douillard FP, Smokvina T, de Vos WM, Knol J, Kleerebezem M (2016) The variable regions of Lactobacillus rhamnosus genomes reveal the dynamic evolution of metabolic and host-adaptation repertoires. Genome Biol Evol 8:1889–1905PubMedPubMedCentralCrossRefGoogle Scholar
  41. Chapot-Chartier MP, Kulakauskas S (2014) Cell wall structure and function in lactic acid bacteria. Microb Cell Factories 13:S9CrossRefGoogle Scholar
  42. Chmielewski RAN, Frank JF (2003) Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf 2:22–32CrossRefGoogle Scholar
  43. Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86:1267–1279PubMedCrossRefGoogle Scholar
  44. Claes IJ, Lebeer S, Shen C, Verhoeven TL, Dilissen E, De Hertogh G, Bullens DM, Ceuppens JL, Van Assche G, Vermeire S, Rutgeerts P, Vanderleyden J, De Keersmaecker SCJ (2010) Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clin Exp Immunol 162:306–314PubMedPubMedCentralCrossRefGoogle Scholar
  45. Claes IJ, Segers ME, Verhoeven TL, Dusselier M, Sels BF, De Keersmaecker SC, Vanderleyden J, Lebeer S (2012) Lipoteichoic acid is an important microbe-associated molecular pattern of Lactobacillus rhamnosus GG. Microb Cell Factories 11:161CrossRefGoogle Scholar
  46. Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP, CerdeñoTárraga AM, Parkhill J, Flynn S, O’Sullivan GC, Collins JK, Higgins D, Shanahan F, Fitzgerald GF, van Sinderen D, O’Toole PW (2006) Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci U S A 2006(103):6718–6723CrossRefGoogle Scholar
  47. Collins LV, Kristian SA, Weidenmaier C, Faigle M, van Kessel KPM, van Strijp JAG, Götz F, Neumeister B, Peschel A (2002) Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J Infect Dis 186:214–219Google Scholar
  48. Danne C, Dramsi S (2012) Pili of gram-positive bacteria: roles in host colonization. Res Microbiol 163:645–658PubMedCrossRefGoogle Scholar
  49. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–556PubMedCrossRefGoogle Scholar
  50. Denou E, Berger B, Barretto C, Panoff JM, Arigoni F, Brussow H (2007) Gene expression of commensal Lactobacillus johnsonii strain NCC533 during in vitro growth and in the murine gut. J Bacteriol 189:8109–8119PubMedPubMedCentralCrossRefGoogle Scholar
  51. Denou E, Pridmore RD, Berger B, Panoff J-M, Arigoni F, Brüssow H (2008) Identification of genes associated with the long-gut persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis. J Bacteriol 190:3161–3168PubMedPubMedCentralCrossRefGoogle Scholar
  52. Dertli E, Mayer MJ, Narbad A (2015) Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiol 15:8–12PubMedPubMedCentralCrossRefGoogle Scholar
  53. Dhanani AS, Bagchi T (2013) The expression of adhesin EF-Tu in response to mucin and its role in Lactobacillus adhesion and competitive inhibition of enteropathogens to mucin. J Appl Microbiol 115:546–554PubMedCrossRefGoogle Scholar
  54. Di Cagno R, De Angelis M, Calasso M, Gobbetti M (2011) Proteomics of the bacterial cross-talk by quorum sensing. J Proteome 74:19–34CrossRefGoogle Scholar
  55. Didienne R, Defargues C, Callon C, Meylheuc T, Hulin S, Montel MC (2012) Characteristics of microbial biofilm on wooden vats (‘gerles’) in PDO Salers cheese. Int J Food Microbiol 156:91–101PubMedCrossRefGoogle Scholar
  56. Donian RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890CrossRefGoogle Scholar
  57. Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7:277PubMedPubMedCentralCrossRefGoogle Scholar
  58. Douillard FP, de Vos WM (2014) Functional genomics of lactic acid bacteria: from food to health. Microb Cell Factories 13:S8CrossRefGoogle Scholar
  59. Douillard FP, Ribbera A, Kant R, Pietilä TE, Järvinen HM, Messing M, Randazzo CL, Paulin L, Laine P, Ritari J, Caggia C, Lähteinen T, Brouns SJ, Satokari R, von Ossowski I, Reunanen J, Palva A, de Vos WM (2013) Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet 9:e1003683PubMedPubMedCentralCrossRefGoogle Scholar
  60. Dramsi S, Caliot E, Bonne I, Guadagnini S, Prevost MC, Kojadinovic M, Lalioui L, Poyart C, Trieu-Cuot P (2006) Assembly and role of pili in group B streptococci. Mol Microbiol 60:1401–1413PubMedCrossRefGoogle Scholar
  61. Elkins CA, Moser SA, Savage DC (2001) Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species. Microbiol 147:3403–3412CrossRefGoogle Scholar
  62. Fabretti F, Theilacker C, Baldassarri L, Kaczynski Z, Kropec A, Holst O, Huebner J (2006) Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun 74:4164–4171PubMedPubMedCentralCrossRefGoogle Scholar
  63. Faille C, Jullien C, Fontaine F, Bellon-Fontaine MN, Slomianny C, Benezech T (2002) Adhesion of Bacillus spores and Escherichia coli cells to inert surface: role of surface hydrophobicity. Can J Microbiol 48:728–738PubMedCrossRefGoogle Scholar
  64. Fernández de Palencia P, Werning ML, Sierra-Filardi E, Dueñas MT, Irastorza A, Corbí AL, López P (2009) Probiotic properties of the2-substituted (1,3)-beta-D-glucan-producing bacterium Pediococcus parvulus 2.6. Appl Environ Microbiol 75:4887–4891PubMedCentralCrossRefGoogle Scholar
  65. Fernández Ramírez MD, Smid EJ, Abee T, Nierop Groot MN (2015) Characterisation of biofilms formed by Lactobacillus plantarum WCFS1 and food spoilage isolates. Int J Food Microbiol 207:23–29PubMedCrossRefGoogle Scholar
  66. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633PubMedGoogle Scholar
  67. Frese SA, Benson SK, Tannock GW, Loach DM, Kim J, Zhang M, Oh PL, Heng NCK, Patil PB, Juge N, MacKenzie DA, Pearson BM, Lapidus A, Dalin E, Tice H, Goltsman E, Land M, Hauser L, Ivanova N, Kyrpides NC, Walter J (2011) The evolution of host specialization of the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 7:e1001314PubMedPubMedCentralCrossRefGoogle Scholar
  68. Garai-Ibabe G, Dueñas MT, Irastorza A, Sierra-Filardi E, Werning ML, López P, Corbí AL, Fernández de Palencia P (2010) Naturally occurring 2-substituted (1,3)-beta-D-glucan producing Lactobacillus suebicus and Pediococcus parvulus strains with potential utility in the production of functional foods. Bioresour Technol 101:9254–9263PubMedCrossRefGoogle Scholar
  69. García-Ruiz A, González de Llano D, Esteban-Fernández A, Requena T, Bartolomé B, Moreno-Arribas MV (2014) Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiol 44:220–225PubMedCrossRefGoogle Scholar
  70. Glenting J, Beck HC, Vrang A, Riemann H, Ravn P, Hansen AM, Antonsson M, Ahrné S, Israelsen H, Madsen S (2013) Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins. Microbiol Res 168:245–253PubMedCrossRefGoogle Scholar
  71. Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L, Salminen S (1992) Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig Dis Sci 37:121–128PubMedCrossRefGoogle Scholar
  72. Golomb BL, Hirao LA, Dandekar S, Marco ML (2016) Gene expression of Lactobacillus plantarum and the commensal microbiota in the ileum of healthy and early SIV-infected rhesus macaques. Scientific Reports 6:24–23CrossRefGoogle Scholar
  73. Granato D, Perotti F, Masserey I, Rouvet M, Golliard M, Servin A, Brassart D (1999) Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl Environ Microbiol 65:1071–1077PubMedPubMedCentralGoogle Scholar
  74. Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M, Corthésy-Theulaz IE (2004) Cell surface-associated elongation factor tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72:2160–2169PubMedPubMedCentralCrossRefGoogle Scholar
  75. Grangette C, Nutten S, Palumbo E, Morath S, Hermann C, Dewulf J, Pot B, Hartung T, Hols P, Mercenier A (2005) Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc Natl Acad Sci U S A 102:10321–10326PubMedPubMedCentralCrossRefGoogle Scholar
  76. Gross G, van der Meulen J, Snel J, van der Meer R, Kleerebezem M, Niewold TA, Hulst MM, Smits MA (2008) Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium. FEMS Immunol Med Microbiol 54:215–223PubMedCrossRefGoogle Scholar
  77. Gross G, Snel J, Boekhorst J, Smits MA, Kleerebezem M (2010) Biodiversity of mannose-specific adhesion in Lactobacillus plantarum revisited: strain-specific domain composition of the mannose-adhesin. Benef Microbes 1:61–66PubMedCrossRefGoogle Scholar
  78. Guegan C, Garderes J, Le Pennec G, Gaillard F, Fay F, Linossier I, Herry JM, Bellon Fontaine MN, Vallee Rehel K (2014) Alteration of bacterial adhesion induced by the substrate stiffness. Colloids Surf B Biointerfaces 114:193–200PubMedCrossRefGoogle Scholar
  79. Guiton PS, Hung CS, Kline KA, Roth R, Kau AL, Hayes E, Heuser J, Dodson KW, Caparon MJ, Hultgren SJ (2009) Contribution of autolysin and sortase a during Enterococcus faecalis DNA-dependent biofilm development. Infect Immun 77:3626–3638PubMedPubMedCentralCrossRefGoogle Scholar
  80. Gunduz GT, Tuncel G (2006) Biofilm formation in an ice cream plant. Antonie Van Leeuwenhoek 89:329–336PubMedCrossRefGoogle Scholar
  81. Hahnel S, Wieser A, Lang R, Rosentritt M (2015) Biofilm formation on the surface of modern implant abutment materials. Clin Oral Implants Res 26:1297–1301PubMedCrossRefGoogle Scholar
  82. Hancock LE, Perego M (2004) The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J Bacteriol 186:5629–5639PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Berni Canani R, Flint HJ, Salminen S, Calder FC, Sanders ME (2014) Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514PubMedCrossRefGoogle Scholar
  84. Hynönen U, Westerlund-Wikström B, Palva A, Korhonen TK (2002) Fibronectin-binding function in the SlpA surface protein of Lactobacillus brevis. J Bacteriol 184:3360–3367PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ionescu A, Wutscher E, Brambilla E, Schneider-Feyrer S, Giessibl FJ, Hahnel S (2012) Influence of surface properties of resin-based composites on in vitro Streptococcus mutans biofilm development. Eur J Oral Sci 120:458–465PubMedCrossRefGoogle Scholar
  86. Jensen H, Roos S, Jonsson H, Rud I, Grimmer S, van Pijkeren JP, Britton RA, Axelsson L (2014) Role of Lactobacillus reuteri cell and mucus-binding protein A (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro. Microbiol 160:671–681CrossRefGoogle Scholar
  87. Jones BV, Begley M, Hill C, Gahan CGM, Marchesi JR (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A 105:13580–13585PubMedPubMedCentralCrossRefGoogle Scholar
  88. Juge N (2012) Microbial adhesins to gastrointestinal mucus. Trends Microbiol 20:30–39PubMedCrossRefGoogle Scholar
  89. Kainulainen V, Loimaranta V, Pekkala A, Edelman S, Antikainen J, Kylväjä R, Laaksonen M, Laakkonen L, Finne J, Korhonen TK (2012) Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37. J Bacteriol 194:2509–2519PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx APA, Lebeer S, De Keersmaecker SCJ, Vanderleyden J, Hamalainen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT, Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjarvi T, Auvinen P, de Vos WM (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci U S A 106:17193–17198PubMedPubMedCentralCrossRefGoogle Scholar
  91. Katakura Y, Sano R, Hashimoto T, Ninomiya K, Shioya S (2010) Lactic acid bacteria display on the cell surface cytosolic proteins that recognize yeast mannan. Appl Microbiol Biotechnol 86:319–326PubMedCrossRefGoogle Scholar
  92. Kindblom C, Davies JR, Herzberg MC, Svensäter G, Wickström C (2012) Salivary proteins promote proteolytic activity in Streptococcus mitis biovar 2 and Streptococcus mutans. Mol Oral Microbiol 27:362–372PubMedCrossRefGoogle Scholar
  93. Kinoshita H, Uchida H, Kawai Y, Kawasaki T, Wakahara N, Matsuo H, Watanabe M, Kitazawa H, Ohnuma S, Miura K, Horii A, Saito T (2008) Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J Appl Microbiol 104:1667–1674PubMedCrossRefGoogle Scholar
  94. Klaenhammer TR, Altermann E, Pfeiler E, Buck BL, Goh YJ, O'Flaherty S, Barrangou R, Duong T (2008) Functional genomics of probiotic lactobacilli. J Clin Gastroenterol 42:S160–S162PubMedCrossRefGoogle Scholar
  95. Kleerebezem M, Vaughan EE (2009) Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269–290PubMedCrossRefGoogle Scholar
  96. Klijn N, Weerkamp AH, de Vos WM (1995) Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl Environ Microbiol 61:2771–2774PubMedPubMedCentralGoogle Scholar
  97. Kniggendorf AK, Nogueira R, Kelb C, Schadzek P, Meinhardt-Wollweber M, Ngezahayo A, Roth B (2016) Confocal Raman microscopy and fluorescent in situ hybridization–a complementary approach for biofilm analysis. Chemosphere 161:112–118PubMedCrossRefGoogle Scholar
  98. Konstantinov SR, Smidt H, de Vos WM, Bruijns SC, Singh SK, Valence F, Molle D, Lortal S, Altermann E, Klaenhammer TR, van Kooyk Y (2008) S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A 105:19474–19479PubMedPubMedCentralCrossRefGoogle Scholar
  99. Koskenniemi K, Laakso K, Koponen J, Kankainen M, Greco D, Auvinen P, Savijoki K, Nyman TA, Surakka A, Salusjärvi T, de Vos WM, Tynkkynen S, Kalkkinen N, Varmanen P (2011) Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Prot 10:M110–002741CrossRefGoogle Scholar
  100. Kristian SA, Datta V, Weidenmaier C, Kansal R, Fedtke I, Peschel A, Gallo RL, Nizetl V (2005) D-alanylation of teichoic acids promotes group a Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187:6719–6725PubMedPubMedCentralCrossRefGoogle Scholar
  101. Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama H (2008) Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng 106:381–386PubMedCrossRefGoogle Scholar
  102. Kubota H, Senda S, Tokuda H, Uchiyama H, Nomura N (2009) Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. plantarum JCM 1149. Food Microbiol 26:592–597PubMedCrossRefGoogle Scholar
  103. Landeta G, Curiel JA, Carrascosa AV, Muñoz R, De Las RB (2013) Technological and safety properties of lactic acid bacteria isolated from Spanish dry-cured sausages. Meat Sci 95:272–280PubMedCrossRefGoogle Scholar
  104. Le DT, Tran TL, Duviau MP, Meyrand M, Guérardel Y, Castelain M, Loubière P, Chapot-Chartier MP, Dague E, Mercier-Bonin M (2013) Unraveling the role of surface mucus-binding protein and pili in muco-adhesion of Lactococcus lactis. PLoS One 8:e79850PubMedPubMedCentralCrossRefGoogle Scholar
  105. Leathers TD, Bischoff KM (2011) Biofilm formation by strains of Leuconostoc citreum and L. mesenteroides. Biotechnol Lett 33:517–523PubMedCrossRefGoogle Scholar
  106. Lebeer S, De Keersmaecker SC, Verhoeven TL, Fadda AA, Marchal K, Vanderleyden J (2007a) Functional analysis of luxS in the probiotic strain Lactobacillus rhamnosus GG reveals a central metabolic role important for growth and biofilm formation. J Bacteriol 189:860–871PubMedCrossRefGoogle Scholar
  107. Lebeer S, Verhoeven TLA, Perea Velez M, Vanderleyden J, De Keersmaecker SCJ (2007b) Impact of enviromental and genetic factor son biofilms formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 73:6768–6775PubMedPubMedCentralCrossRefGoogle Scholar
  108. Lebeer S, Verhoeven TL, Francius G, Schoofs G, Lambrichts I, Dufrêne Y, Vanderleyden J, De Keersmaecker SC (2009) Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl Environ Microbiol 75:3554–3563PubMedPubMedCentralCrossRefGoogle Scholar
  109. Lebeer S, Claes IJ, Verhoeven TL, Vanderleyden J, De Keersmaecker SC (2011) Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb Biotechnol 4:368–374PubMedPubMedCentralCrossRefGoogle Scholar
  110. Lebeer S, Claes IJ, Tytgat HLP, Verhoeven TLA, Marien E, von Ossowski I, Reunanen J, Palva A, de Vos WM, De Keersmaecker SCI, Vanderleyden J (2012) Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl Environ Microbiol 78:185–193PubMedPubMedCentralCrossRefGoogle Scholar
  111. Lee IC, Caggianiello G, van Swam II, Taverne N, Meijerink M, Bron PA, Spano G, Kleerebezem M (2016) Strain-specific features of extracellular polysaccharides and their impact on host interactions of Lactobacillus plantarum. Appl Environ Microbiol AEM-00306Google Scholar
  112. Licitra G, Ogier JC, Parayre S, Pediliggieri C, Carnemolla TM, Falentin H, Madec MN, Carpino S, Lortal S (2007) Variability of bacterial biofilms of the “tina” wood vats used in the ragusano cheese-making process. Appl Environ Microbiol 73:6980–6987PubMedPubMedCentralCrossRefGoogle Scholar
  113. Lonvaud-Funel A (2016) Undesirable compounds and spoilage microorganisms in wine. In: Wine Safety, Consumer Preference, and Human Health Springer International Publishing, pp. 3–26Google Scholar
  114. Macías-Rodríguez ME, Zagorec M, Ascencio F, Vázquez-Juárez R, Rojas M (2009) Lactobacillus fermentum BCS87 expresses mucus- and mucin-binding proteins on the cell surface. J Appl Microbiol 107:1866–1874PubMedCrossRefGoogle Scholar
  115. MacKenzie DA, Tailford LE, Hemmings AM, Juge N (2009) Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. J Biol Chem 284:32444–32453PubMedPubMedCentralCrossRefGoogle Scholar
  116. Mackenzie DA, Jeffers F, Parker ML, Vibert-Vallet A, Bongaerts RJ, Roos S, Walter J, Juge N (2010) Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiol 156:3368–3378CrossRefGoogle Scholar
  117. Malik S, Petrova MI, Claes IJ, Verhoeven TLA, Busschaert P, Vaneechoutte M, Lievens B, Lambrichts I, Siezen RJ, Balzarini J, Vanderleyden J, Lebeer S (2013) The high auto-aggregative and adhesive phenotype of the vaginal Lactobacillus plantarum strain CMPG5300 is sortase-dependent. Appl Environ Microbiol 79:4576–4585PubMedPubMedCentralCrossRefGoogle Scholar
  118. Mandlik A, Swierczynski A, Das A, Ton-That H (2008) Pili in gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16:33–40PubMedPubMedCentralCrossRefGoogle Scholar
  119. Marco ML, Bongers RS, de Vos WM, Kleerebezem M (2007) Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice. Appl Environ Microb 73:24–132CrossRefGoogle Scholar
  120. Marco ML, Peters TH, Bongers RS, Molenaar D, van Hemert S, Sonnenburg JL, Gordon JI, Kleerebezem M (2009) Lifestyle of Lactobacillus plantarum in the mouse caecum. Environ Microbiol 11:2747–2757PubMedPubMedCentralCrossRefGoogle Scholar
  121. Marco ML, de Vries MC, Wels M, Molenaar D, Mangell P, Ahrne S, de Vos WM, Vaughan EE, Kleerebezem M (2010) Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice. ISME J 4:1481–1484PubMedCrossRefGoogle Scholar
  122. Mariani C, Briandet R, Chamba JF, Notz E, Carnet-Pantiez A, Eyoug RN, Oulahal N (2007) Biofilm ecology of wooden shelves used in ripening the French raw milk smear cheese reblochon de Savoie. J Dairy Sci 90:1653–1661PubMedCrossRefGoogle Scholar
  123. Matsuguchi T, Takagi A, Matsuzaki T, Nagaoka M, Ishikawa K, Yokokura T, Yoshikai Y (2003) Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through toll-like receptor 2. Clin Diagn Lab Immunol 10:259–266PubMedPubMedCentralGoogle Scholar
  124. Meijerink M, van Hemert S, Taverne N, Wels M, de Vos P, Bron PA, Savelkoul HF, van Bilsen J, Kleerebezem M, Wells JM (2010) Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PLoS One 5:e10632PubMedPubMedCentralCrossRefGoogle Scholar
  125. Mercier C, Durrieu C, Briandet R, Domakova E, Tremblay J, Buist G, Kulakauskas S (2002) Positive role of peptidoglycan breaks in lactococcal biofilm formation. Mol Microbiol 46:235–243PubMedCrossRefGoogle Scholar
  126. Meyrand M, Guillot A, Goin M, Furlan S, Armalyte J, Kulakauskas S, Cortes-Perez NG, Thomas G, Chat S, Péchoux C, Dupres V, Hols P, Dufrêne YF, Trugnan G, Chapot-Chartier MP (2013) Surface proteome analysis of a natural isolate of Lactococcus lactis reveals the presence of pili able to bind human intestinal epithelial cells. Mol Cell Proteomics 12:3935–3947PubMedPubMedCentralCrossRefGoogle Scholar
  127. Mitik-Dineva N, Wang J, Mocanascu CR, Stoddart PR, Crawford RJ, Ivanova EP (2008) Impact of nano-topography on bacterial attachment. Biotechnol J 3:536–544PubMedCrossRefGoogle Scholar
  128. Mohamadzadeh M, Pfeiler EA, Brown JB, Zadeh M, Gramarossa M, Managlia E, Bere P, Sarraj B, Khan MW, Pakanati KC, Ansaria MJ, O'Flahertyc S, Barretta T, Klaenhammer TR (2011) Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A 108:4623–4630PubMedPubMedCentralCrossRefGoogle Scholar
  129. Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM, Remaud-Simeon M (2001) Homopolysaccharides from lactic acid bacteria. Int Dairy J 11:675–685CrossRefGoogle Scholar
  130. Mukai T, Asasaka T, Sato E, Mori K, Matsumoto M, Ohori H (2002) Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. FEMS Immunol Med Microbiol 32:105–110PubMedCrossRefGoogle Scholar
  131. Murofushi Y, Villena J, Morie K, Kanmani P, Tohno M, Shimazu T, Aso H, Suda Y, Hashiguchi K, Saito T, Kitazawa H (2015) The toll-like receptor family protein RP105/MD1 complex is involved in the immunoregulatory effect of exopolysaccharides from Lactobacillus plantarum N14. Mol Immunol 64:63–75PubMedCrossRefGoogle Scholar
  132. Myszka K, Czaczyk K (2009) Characterization of adhesive exopolysaccharide (EPS) produced by Pseudomonas aeruginosa under starvation conditions. Curr Microbiol 58:541–546PubMedCrossRefGoogle Scholar
  133. Nallapareddy SR, Sillanpaa J, Mitchell J, Singh KV, Chowdhury SA, Weinstock GM, Sullam PM, Murray BE (2011a) Conservation of Ebp-type pilus genes among enterococci and demonstration of their role in adherence of Enterococcus faecalis to human platelets. Infect Immun 79:2911–2920PubMedPubMedCentralCrossRefGoogle Scholar
  134. Nallapareddy SR, Singh KV, Sillanpaa J, Zhao M, Murray BE (2011b) Relative contributions of Ebp pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect Immun 79:2901–2910PubMedPubMedCentralCrossRefGoogle Scholar
  135. Nguyen TL, Vieira-Silva S, Liston A, Raes J (2015) How informative is the mouse for human gut microbiota research? Dis Model Mech 8:1–16PubMedPubMedCentralCrossRefGoogle Scholar
  136. Nishiyama K, Ochiai A, Tsubokawa D, Ishihara K, Yamamoto Y, Mukai T (2013) Identification and characterization of sulfated carbohydrate-binding protein from Lactobacillus reuteri. PLoS One 8:e83703PubMedPubMedCentralCrossRefGoogle Scholar
  137. Nishiyama K, Ueno S, Sugiyama M, Yamamoto Y, Mukai T (2016) Lactobacillus rhamnosus GG SpaC pilin subunit binds to the carbohydrate moieties of intestinal glycoconjugates. Anim Sci J 87:809–815PubMedCrossRefGoogle Scholar
  138. Notararigo S, de las Casas-Engel M, de Palencia PF, Corbí AL, López P (2014) Immunomodulation of human macrophages and myeloid cells by 2-substituted (1–3)-β-d-glucan from P. parvulus 2.6. Carbohydr Polym 112:109–113PubMedCrossRefGoogle Scholar
  139. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693PubMedPubMedCentralCrossRefGoogle Scholar
  140. Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics an overview of beneficial effects. Antonie Van Leeuwenhoek 83:279–289CrossRefGoogle Scholar
  141. Oxaran V, Ledue-Clier F, Dieye Y, Herry JM, Péchoux C, Meylheuc T, Briandet R, Juillard V, Piard JC (2012) Pilus biogenesis in Lactococcus lactis: molecular characterization and role in aggregation and biofilm formation. PLoS One 7:e50989PubMedPubMedCentralCrossRefGoogle Scholar
  142. Parisotto TM, Steiner-Oliveira C, Duque C, Peres RC, Rodrigues LK, Nobre-dos-Santos M (2010) Relationship among microbiological composition and presence of dental plaque, sugar exposure, social factors and different stages of early childhood caries. Arch Oral Biol 55:365–373PubMedCrossRefGoogle Scholar
  143. Park MR, Yun HS, Son SJ, Oh S, Kim Y (2014) Short communication: development of a direct in vivo screening model to identify potential probiotic bacteria using Caenorhabditis elegans. J Dairy Sci 97:6828–6834PubMedCrossRefGoogle Scholar
  144. Patel DK, Shah KR, Pappachan A, Gupta S, Singh DD (2016) Cloning, expression and characterization of a mucin-binding GAPDH from Lactobacillus acidophilus. Int J Biol Macromol 91:338–346PubMedCrossRefGoogle Scholar
  145. Perea Velez M, Verhoeven TL, Draing C, Von Aulock S, Pfitzenmaier M, Geyer A, Lambrichts I, Grangette C, Pot B, Vanderleyden J, De Keersmaecker SC (2007) Functional analysis of D-alanylation of lipoteichoic acid in the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 73:3595–3604PubMedCrossRefGoogle Scholar
  146. Perera-Costa D, Bruque JM, González-Martín ML, Gómez-García AC, Vadillo-Rodríguez V (2014) Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns. Langmuir 30:4633–4641PubMedCrossRefGoogle Scholar
  147. Pfeiler EA, Klaenhammer TR (2009) Role of transporter proteins in bile tolerance of Lactobacillus acidophilus. Appl Environ Microbiol 75:6013–6016PubMedPubMedCentralCrossRefGoogle Scholar
  148. Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR (2007) Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol 189:4624–4634PubMedPubMedCentralCrossRefGoogle Scholar
  149. Piard JC, Briandet R (2015) Lactic acid bacteria biofilms: from their formation to their health and biotechnological potential. In: Mozzi F, Raya RR, Vignolo GM (eds) Biotechnology of lactic acid bacteria: novel applications. Wiley-Blackwell, Hoboken, pp 341–361Google Scholar
  150. Poyart C, Pellegrini E, Marceau M, Baptista M, Jaubert F, Lamy M-C, Trieu-Cuot P (2003) Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl lipoteichoic acids is due to an increased susceptibility to defensins and phagocytic cells. Mol Microbiol 49:1615–1625Google Scholar
  151. Pretzer G, Snel J, Molenaar D, Wiersma A, Bron PA, Lambert J, de Vos WM, van der Meer R, Smits MA, Kleerebezem M (2005) Biodiversity based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol 187:6128–6136PubMedPubMedCentralCrossRefGoogle Scholar
  152. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 101:2512–2517PubMedPubMedCentralCrossRefGoogle Scholar
  153. Raftis EJ, Salvetti E, Torriani S, Felis GE, O’Toole PW (2011) Genomic diversity of Lactobacillus salivarius. Appl Environ Microbiol 77:954–965PubMedCrossRefGoogle Scholar
  154. Ramiah K, van Reenen CA, Dicks LM (2008) Surface-bound proteins of Lactobacillus plantarum 423 that contribute to adhesion of Caco-2 cells and their role in competitive exclusion and displacement of Clostridium sporogenes and Enterococcus faecalis. Res Microbiol 159:470–475PubMedCrossRefGoogle Scholar
  155. Remus DM, Bongers RS, Meijerink M, Fusetti F, Poolman B, de Vos P, Wells JM, Kleerebezem M, Bron PA (2013) Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation. J Bacteriol 195:502–509PubMedPubMedCentralCrossRefGoogle Scholar
  156. Renner LD, Weibel DB (2011) Physicochemical regulation of biofilm formation. MRS Bull 36:347–355PubMedPubMedCentralCrossRefGoogle Scholar
  157. Rieu A, Aoudia N, Jego G, Chluba J, Yousfi N, Briandet R, Deschamps J, Gasquet B, Monedero V, Garrido C, Guzzo J (2014) The biofilm mode of life boosts the anti-inflammatory properties of lactobacillus. Cell Microbiol 16:1836–1853PubMedCrossRefGoogle Scholar
  158. Rintahaka J, Yu X, Kant R, Palva A, von Ossowski I (2014) Phenotypical analysis of the Lactobacillus rhamnosus GG fimbrial spaFED operon: surface expression and functional characterization of recombinant SpaFED pili in Lactococcus lactis. PLoS One 9:e113922PubMedPubMedCentralCrossRefGoogle Scholar
  159. Roos S, Jonsson H (2002) A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiol 148:433–442CrossRefGoogle Scholar
  160. Roos S, Aleljung P, Robert N, Lee B, Wadström T, Lindberg M, Jonsson H (1996) A collagen binding protein from Lactobacillus reuteri is part of an ABC transporter system? FEMS Microbiol Lett 144:33–38PubMedCrossRefGoogle Scholar
  161. Ruas-Madiedo P, Gueimonde M, Margolles A, de los Losreyes-Gavilán CG, Salminen S (2006) Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot 69:2011–2015PubMedCrossRefGoogle Scholar
  162. Russo P, López P, Capozzi V, Fernández de Palencia P, Dueñas MT, Spano G, Fiocco D (2012) Beta-glucans improve growth, viability and colonization of probiotic microorganisms. Int J Mol Sci 13:6026–6039PubMedPubMedCentralCrossRefGoogle Scholar
  163. Russo P, Iturria I, Mohedano ML, Caggianiello G, Rainieri S, Fiocco D, Angel Pardo M, López P, Spano G (2015) Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl Microbiol Biotechnol 99:3479–3490PubMedCrossRefGoogle Scholar
  164. Saad N, Urdaci M, Vignoles C, Chaignepain S, Tallon R, Schmitter JM, Bressollier P (2009) Lactobacillus plantarum 299v surface-bound GAPDH: a new insight into enzyme cell walls location. J Microbiol Biotechnol 19:1635–1643PubMedCrossRefGoogle Scholar
  165. Saha N, Monge C, Dulong V, Picart C, Glinel K (2013) Influence of polyelectrolyte film stiffness on bacterial growth. Biomacromol 14:520–528CrossRefGoogle Scholar
  166. Sára M, Sleytr UB (2000) S-layer proteins. J Bacteriol 182:859–868PubMedPubMedCentralCrossRefGoogle Scholar
  167. Savijoki K, Lietzen N, Kankainen M, Alatossava T, Koskenniemi K, Varmanen P, Nyman TA (2011) Comparative proteome cataloging of Lactobacillus rhamnosus strains GG and Lc705. J Proteome Res 10:3460–3473PubMedCrossRefGoogle Scholar
  168. Schwab C, Tveit AT, Schleper C, Urich T (2014) Gene expression of lactobacilli in murine forestomach biofilms. Microbial Biotechnol 7:347–359CrossRefGoogle Scholar
  169. Sepp E, Mikelsaar M, Salminen S (1993) Effect of administration of Lactobacillus casei strain GG on the gastrointestinal microbiota of newborns. Microb Ecol Health Dis 6:309–314CrossRefGoogle Scholar
  170. Shi X, Zhu X (2009) Biofilm formation and food safety in food industries. Trends Food Sci Technol 20:407–413CrossRefGoogle Scholar
  171. Sillanpää J, Martínez B, Antikainen J, Toba T, Kalkkinen N, Tankka S, Lounatmaa K, Keränen J, Höök M, Westerlund-Wikström B, Pouwels PH, Korhonen TK (2000) Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus. J Bacteriol 182:6440–6450PubMedPubMedCentralCrossRefGoogle Scholar
  172. Sims IM, Frese SA, Walter J, Loach D, Wilson M, Appleyard K, Eason J, Livingston M, Baird M, Cook G, Tannock GW (2011) Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23. ISME J 5:1115–1124PubMedPubMedCentralCrossRefGoogle Scholar
  173. Smelt MJ, de Haan BJ, Bron PA, van Swam I, Meijerink M, Wells JM, Kleerebezem M, Faas MM, de Vos P (2013) The impact of Lactobacillus plantarum WCFS1 teichoic acid D-alanylation on the generation of effector and regulatory T-cells in healthy mice. PLoS One 30:e63099CrossRefGoogle Scholar
  174. Somers EB, Johnson ME, Wong AC (2001) Biofilm formation and contamination of cheese by nonstarter lactic acid bacteria in the dairy environment. J Dairy Sci 84:1926–1936PubMedCrossRefGoogle Scholar
  175. Spurbeck RR, Arvidson CG (2010) Lactobacillus jensenii surface-associated proteins inhibit Neisseria gonorrhoeae adherence to epithelial cells. Infect Immun 78:3103–3111PubMedPubMedCentralCrossRefGoogle Scholar
  176. Stack HM, Kearney N, Stanton C, Fitzgerald GF, Ross RP (2010) Association of beta-glucan endogenous production with increased stress tolerance of intestinal lactobacilli. Appl Environ Microbiol 76:500–507PubMedCrossRefGoogle Scholar
  177. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215PubMedCrossRefGoogle Scholar
  178. Sturme MH, Nakayama J, Molenaar D, Murakami Y, Kunugi R, Fujii T, Vaughan EE, Kleerebezem M, de Vos WM (2005) An agr-like two-component regulatory system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and regulation of adherence. J Bacteriol 187:5224–5235PubMedPubMedCentralCrossRefGoogle Scholar
  179. Suzuki K, Asano S, Iijima K, Kitamoto K (2008) Sake and beer spoilage lactic acid bacteria—a review. J Inst Brew 114:209–223CrossRefGoogle Scholar
  180. Tang Y, Dong W, Wan K, Zhang L, Li C, Zhang L, Liu N (2015) Exopolysaccharide produced by Lactobacillus plantarum induces maturation of dendritic cells in BALB/c mice. PLoS One 10:e0143743PubMedPubMedCentralCrossRefGoogle Scholar
  181. Teughels W, Van Assche N, Sliepen I, Quirynen M (2006) Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 17:68–81PubMedCrossRefGoogle Scholar
  182. Theilacker C, Kaczyński Z, Kropec A, Sava I, Ye L, Bychowska A, Holst O, Huebner J (2011) Serodiversity of opsonic antibodies against Enterococcus faecalis-glycans of the cell wall revisited. PLoS One 6:e17839PubMedPubMedCentralCrossRefGoogle Scholar
  183. Tytgat HL, van Teijlingen NH, Sullan RM, Douillard FP, Rasinkangas P, Messing M, Reunanen J, Satokari R, Vanderleyden J, Dufrêne YF, Geijtenbeek TB, de Vos WM, Lebeer S (2016a) Probiotic gut microbiota isolate interacts with dendritic cells via glycosylated heterotrimeric pili. PLoS One 11:e0151824PubMedPubMedCentralCrossRefGoogle Scholar
  184. Tytgat HL, Douillard FP, Reunanen J, Rasinkangas P, Hendrickx AP, Laine PK, Paulin L, Satokari R, de Vos WM (2016b) Lactobacillus rhamnosus GG outcompetes Enterococcus faecium via mucus-binding pili: evidence for a novel and heterospecific probiotic mechanism. Appl Environ Microbiol 82:5756–5762PubMedPubMedCentralCrossRefGoogle Scholar
  185. Van Acker H, Van Dijck P, Coenye T (2014) Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 22:326–333PubMedCrossRefGoogle Scholar
  186. Van Bokhorst-van de Veen H, van Swam I, Wels M, Bron PA, Kleerebezem M (2012) Congruent strain specific intestinal persistence of Lactobacillus plantarum in an intestine-mimicking in vitro system and in human volunteers. PLoS One 7:e44588PubMedPubMedCentralCrossRefGoogle Scholar
  187. van Hemert S, Meijerink M, Molenaar D, Bron PA, de Vos P, Kleerebezem M, Wells JM, Marco ML (2010) Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMC Microbiol 10:293PubMedPubMedCentralCrossRefGoogle Scholar
  188. van Pijkeren JP, Canchaya C, Ryan KA, Li Y, Claesson MJ, Sheil B, Steidler L, O'Mahony L, Fitzgerald GF, van Sinderen D, O'Toole PW (2006) Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Appl Environ Microbiol 76:4143–4153CrossRefGoogle Scholar
  189. Vargas García CE, Petrova M, Claes IJJ, De Boeck I, Verhoeven TLA, Dilissen E, von Ossowski I, Palva A, Bullens DM, Vanderleyden J, Lebeer S (2015) Piliation of Lactobacillus rhamnosus GG promotes adhesion, phagocytosis, and cytokine modulation in macrophages. Appl Environ Microbiol 81:2050–2062PubMedPubMedCentralCrossRefGoogle Scholar
  190. Vélez MP, Petrova MI, Lebeer S, Verhoeven TL, Claes I, Lambrichts I, Tynkkynen S, Vanderleyden J, De Keersmaecker SC (2010) Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation. FEMS Immunol Med Microbiol 59:386–398PubMedCrossRefGoogle Scholar
  191. von Ossowski I, Reunanen J, Satokari R, Vesterlund S, KankainenM M, Huhtinen H, Tynkkynen S, Salminen S, de Vos WM, Palva A (2010) Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol 76:2049–2057CrossRefGoogle Scholar
  192. Von Ossowski I, Satokari R, Reunanen J, Lebeer S, de Keersmaecker SCJ, Vanderleyden J, de Vos WM, Palva A (2011) Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol 77:4465–4472PubMedPubMedCentralCrossRefGoogle Scholar
  193. Walter J, Loach DM, Alqumber M, Rockel C, Hermann C, Pfitzenmaier M, Tannock GW (2007) D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract. Environ Microbiol 9:1750–1760PubMedCrossRefGoogle Scholar
  194. Walter J, Schwab C, Loach DM, Ganzle MG, Tannock GW (2008) Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiol 154:72–80CrossRefGoogle Scholar
  195. Watanabe M, Kinoshita H, Nitta M, Yukishita R, Kawai Y, Kimura K, Taketomo N, Yamazaki Y, Tateno Y, Miura K, Horii A, Kitazawa H, Saito T (2010) Identification of a new adhesin-like protein from Lactobacillus mucosae ME-340 with specific affinity to the human blood group a and B antigens. J Appl Microbiol 109:927–935PubMedCrossRefGoogle Scholar
  196. Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:267–2679CrossRefGoogle Scholar
  197. Weiss G, Jespersen L (2012) Transcriptional analysis of genes associated with stress and adhesion in Lactobacillus acidophilus NCFM during the passage through an in vitro gastrointestinal tract model. J Mol Microbiol Biotechnol 18:206–214CrossRefGoogle Scholar
  198. Whitehead K, Versalovic J, Roos S, Britton RA (2008) Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol 74:1812–1819PubMedPubMedCentralCrossRefGoogle Scholar
  199. Wickström C, Chávez de Paz L, Davies JR, Svensäter G (2013) Surface-associated MUC5B mucins promote protease activity in Lactobacillus fermentum biofilms. BMC Oral Health 13:43PubMedPubMedCentralCrossRefGoogle Scholar
  200. Zhang X, Wang L, Levanen E (2013) Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv 3:12003–12020CrossRefGoogle Scholar
  201. Zhao T, Podtburg TC, Zhao P, Chen D, Baker DA, Cords B, Doyle MP (2013) Reduction by competitive bacteria of Listeria monocytogenes in biofilms and Listeria bacteria in floor drains in a ready-to-eat poultry processing plant. J Food Prot 76:601–607PubMedCrossRefGoogle Scholar
  202. Zhou M, Theunissen D, Wels M, Siezen RJ (2010) LAB-secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of lactic acid bacteria. BMC Genomics 11:651PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mattia Pia Arena
    • 1
  • Vittorio Capozzi
    • 1
  • Giuseppe Spano
    • 1
  • Daniela Fiocco
    • 2
  1. 1.Department of Agriculture, Food and Environment SciencesUniversity of FoggiaFoggiaItaly
  2. 2.Department of Clinical and Experimental MedicineUniversity of FoggiaFoggiaItaly

Personalised recommendations