Applied Microbiology and Biotechnology

, Volume 101, Issue 7, pp 2629–2640 | Cite as

Optogenetic switches for light-controlled gene expression in yeast

  • Francisco Salinas
  • Vicente Rojas
  • Verónica Delgado
  • Eduardo Agosin
  • Luis F. Larrondo
Mini-Review

Abstract

Light is increasingly recognized as an efficient means of controlling diverse biological processes with high spatiotemporal resolution. Optogenetic switches are molecular devices for regulating light-controlled gene expression, protein localization, signal transduction and protein-protein interactions. Such molecular components have been mainly developed through the use of photoreceptors, which upon light stimulation undergo conformational changes passing to an active state. The current repertoires of optogenetic switches include red, blue and UV-B light photoreceptors and have been implemented in a broad spectrum of biological platforms. In this review, we revisit different optogenetic switches that have been used in diverse biological platforms, with emphasis on those used for light-controlled gene expression in the budding yeast Saccharomyces cerevisiae. The implementation of these switches overcomes the use of traditional chemical inducers, allowing precise control of gene expression at lower costs, without leaving chemical traces, and positively impacting the production of high-value metabolites and heterologous proteins. Additionally, we highlight the potential of utilizing this technology beyond laboratory strains, by optimizing it for use in yeasts tamed for industrial processes. Finally, we discuss how fungal photoreceptors could serve as a source of biological parts for the development of novel optogenetic switches with improved characteristics. Although optogenetic tools have had a strong impact on basic research, their use in applied sciences is still undervalued. Therefore, the invitation for the future is to utilize this technology in biotechnological and industrial settings.

Keywords

Light Optogenetic switch Yeast Fungal photoreceptors Synthetic biology 

References

  1. Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, Deisseroth K (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4(3):S143–S156. doi:10.1088/1741-2560/4/3/S02 CrossRefPubMedGoogle Scholar
  2. Avalos JL, Fink GR, Stephanopoulos G (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31(4):335–341. doi:10.1038/nbt.2509 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baker CL, Loros JJ, Dunlap JC (2012) The circadian clock of Neurospora crassa. FEMS Microbiol Rev 36(1):95–110. doi:10.1111/j.1574-6976.2011.00288.x CrossRefPubMedGoogle Scholar
  4. Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15(7):1650–1657PubMedPubMedCentralGoogle Scholar
  5. Bayram O, Braus GH, Fischer R, Rodriguez-Romero J (2010) Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 47(11):900–908. doi:10.1016/j.fgb.2010.05.008 CrossRefPubMedGoogle Scholar
  6. Bergström A, Simpson JT, Salinas F, Barre B, Parts L, Zia A, Nguyen Ba AN, Moses AM, Louis EJ, Mustonen V, Warringer J, Durbin R, Liti G (2014) A high-definition view of functional genetic variation from natural yeast genomes. Mol Biol Evol 31(4):872–888. doi:10.1093/molbev/msu037 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15(20):1833–1838. doi:10.1016/j.cub.2005.08.061 CrossRefPubMedGoogle Scholar
  8. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268. doi:10.1038/nn1525 CrossRefPubMedGoogle Scholar
  9. Canessa P, Schumacher J, Hevia MA, Tudzynski P, Larrondo LF (2013) Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the white collar complex. PLoS One 8(12):e84223. doi:10.1371/journal.pone.0084223 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ (2009) Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 28(8):1029–1042. doi:10.1038/emboj.2009.54 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen D, Gibson ES, Kennedy MJ (2013) A light-triggered protein secretion system. J Cell Biol 201(4):631–640. doi:10.1083/jcb.201210119 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cheng P, He Q, Yang Y, Wang L, Liu Y (2003) Functional conservation of light, oxygen, or voltage domains in light sensing. Proc Natl Acad Sci U S A 100(10):5938–5943. doi:10.1073/pnas.1031791100 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O’Hara A, Kelly SM, Hothorn M, Smith BO, Hitomi K, Jenkins GI, Getzoff ED (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335(6075):1492–1496. doi:10.1126/science.1218091 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cloix C, Kaiserli E, Heilmann M, Baxter KJ, Brown BA, O’Hara A, Smith BO, Christie JM, Jenkins GI (2012) C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein. Proc Natl Acad Sci U S A 109(40):16366–16370. doi:10.1073/pnas.1210898109 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Corrochano LM, Garre V (2010) Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light. Fungal Genet Biol 47(11):893–899. doi:10.1016/j.fgb.2010.04.007 CrossRefPubMedGoogle Scholar
  16. Crefcoeur RP, Yin R, Ulm R, Halazonetis TD (2013) Ultraviolet-B-mediated induction of protein-protein interactions in mammalian cells. Nat Commun 4:1779. doi:10.1038/ncomms2800 CrossRefPubMedGoogle Scholar
  17. Dai Z, Liu Y, Guo J, Huang L, Zhang X (2014) Yeast synthetic biology for high-value metabolites. FEMS Yeast Res. doi:10.1111/1567-1364.12187 Google Scholar
  18. Deisseroth K (2011) Optogenetics. Nat Methods 8(1):26–29. doi:10.1038/nmeth.f.324 CrossRefPubMedGoogle Scholar
  19. Deisseroth K, Feng G, Majewska AK, Miesenbock G, Ting A, Schnitzer MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26(41):10380–10386. doi:10.1523/JNEUROSCI.3863-06.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Deiters A (2010) Principles and applications of the photochemical control of cellular processes. Chembiochem 11(1):47–53. doi:10.1002/cbic.200900529 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Drepper T, Krauss U, Meyer zu Berstenhorst S, Pietruszka J, Jaeger KE (2011) Lights on and action! Controlling microbial gene expression by light. Appl Microbiol Biotechnol 90(1):23–40. doi:10.1007/s00253-011-3141-6 CrossRefPubMedGoogle Scholar
  22. Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ, Seidlitz HK, Nagy F, Ulm R (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28(5):591–601. doi:10.1038/emboj.2009.4 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Folcher M, Oesterle S, Zwicky K, Thekkottil T, Heymoz J, Hohmann M, Christen M, Daoud El-Baba M, Buchmann P, Fussenegger M (2014) Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nat Commun 5:5392. doi:10.1038/ncomms6392 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297(5582):815–819. doi:10.1126/science.1073681 CrossRefPubMedGoogle Scholar
  25. Froehlich AC, Noh B, Vierstra RD, Loros J, Dunlap JC (2005) Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. Eukaryot Cell 4(12):2140–2152. doi:10.1128/EC.4.12.2140-2152.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gautier A, Gauron C, Volovitch M, Bensimon D, Jullien L, Vriz S (2014) How to control proteins with light in living systems. Nat Chem Biol 10(7):533–541. doi:10.1038/nchembio.1534 CrossRefPubMedGoogle Scholar
  27. Gerhardt KP, Olson EJ, Castillo-Hair SM, Hartsough LA, Landry BP, Ekness F, Yokoo R, Gomez EJ, Ramakrishnan P, Suh J, Savage DF, Tabor JJ (2016) An open-hardware platform for optogenetics and photobiology. Sci Rep 6:35363. doi:10.1038/srep35363 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Giaever G, Nislow C (2014) The yeast deletion collection: a decade of functional genomics. Genetics 197(2):451–465. doi:10.1534/genetics.114.161620 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37(20):6984–6990. doi:10.1093/nar/gkp687 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison CA 3rd (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci U S A 105(51):20404–20409. doi:10.1073/pnas.0811011106 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(5287):546 563-7CrossRefPubMedGoogle Scholar
  32. Guntas G, Hallett RA, Zimmerman SP, Williams T, Yumerefendi H, Bear JE, Kuhlman B (2015) Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc Natl Acad Sci U S A 112(1):112–117. doi:10.1073/pnas.1417910112 CrossRefPubMedGoogle Scholar
  33. Harper SM, Neil LC, Gardner KH (2003) Structural basis of a phototropin light switch. Science 301(5639):1541–1544. doi:10.1126/science.1086810 CrossRefPubMedGoogle Scholar
  34. He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297(5582):840–843. doi:10.1126/science.1072795 CrossRefPubMedGoogle Scholar
  35. Heintzen C, Loros JJ, Dunlap JC (2001) The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104(3):453–464CrossRefPubMedGoogle Scholar
  36. Hevia MA, Canessa P, Muller-Esparza H, Larrondo LF (2015) A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana. Proc Natl Acad Sci U S A 112(28):8744–8749. doi:10.1073/pnas.1508432112 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hughes RM, Bolger S, Tapadia H, Tucker CL (2012) Light-mediated control of DNA transcription in yeast. Methods 58(4):385–391. doi:10.1016/j.ymeth.2012.08.004 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Idnurm A, Heitman J (2005) Photosensing fungi: phytochrome in the spotlight. Curr Biol 15(20):R829–R832. doi:10.1016/j.cub.2005.10.001 CrossRefPubMedGoogle Scholar
  39. Jensen MK, Keasling JD (2014) Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res. doi:10.1111/1567-1364.12185 PubMedGoogle Scholar
  40. Jost AP, Weiner OD (2015) Probing yeast polarity with acute, reversible, optogenetic inhibition of protein function. ACS Synth Biol 4(10):1077–1085. doi:10.1021/acssynbio.5b00053 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kaberniuk AA, Shemetov AA, Verkhusha VV (2016) A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nat Methods 13(7):591–597. doi:10.1038/nmeth.3864 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kawano F, Suzuki H, Furuya A, Sato M (2015) Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat Commun 6:6256. doi:10.1038/ncomms7256 CrossRefPubMedGoogle Scholar
  43. Kawano F, Okazaki R, Yazawa M, Sato M (2016) A photoactivatable Cre-loxP recombination system for optogenetic genome engineering. Nat Chem Biol 12(12):1059–1064. doi:10.1038/nchembio.2205 CrossRefPubMedGoogle Scholar
  44. Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7(12):973–975. doi:10.1038/nmeth.1524 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kim H, Yoo SJ, Kang HA (2014) Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res. doi:10.1111/1567-1364.12195 Google Scholar
  46. Larrondo LF, Olivares-Yanez C, Baker CL, Loros JJ, Dunlap JC (2015) Circadian rhythms. Decoupling circadian clock protein turnover from circadian period determination. Science 347(6221):1257277. doi:10.1126/science.1257277 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Leung DW, Otomo C, Chory J, Rosen MK (2008) Genetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathway. Proc Natl Acad Sci U S A 105(35):12797–12802. doi:10.1073/pnas.0801232105 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Levskaya A, Weiner OD, Lim WA, Voigt CA (2009) Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461(7266):997–1001. doi:10.1038/nature08446 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Li M, Borodina I (2014) Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res. doi:10.1111/1567-1364.12213 Google Scholar
  50. Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O’Kelly MJ, van Oudenaarden A, Barton DB, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ (2009) Population genomics of domestic and wild yeasts. Nature 458(7236):337–341. doi:10.1038/nature07743 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322(5907):1535–1539. doi:10.1126/science.1163927 CrossRefPubMedGoogle Scholar
  52. Lopez J, Essus K, Kim IK, Pereira R, Herzog J, Siewers V, Nielsen J, Agosin E (2015) Production of beta-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae. Microb Cell Factories 14:84. doi:10.1186/s12934-015-0273-x CrossRefGoogle Scholar
  53. Lungu OI, Hallett RA, Choi EJ, Aiken MJ, Hahn KM, Kuhlman B (2012) Designing photoswitchable peptides using the AsLOV2 domain. Chem Biol 19(4):507–517. doi:10.1016/j.chembiol.2012.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ma Z, Du Z, Chen X, Wang X, Yang Y (2013) Fine tuning the LightOn light-switchable transgene expression system. Biochem Biophys Res Commun 440(3):419–423. doi:10.1016/j.bbrc.2013.09.092 CrossRefPubMedGoogle Scholar
  55. Malzahn E, Ciprianidis S, Kaldi K, Schafmeier T, Brunner M (2010) Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142(5):762–772. doi:10.1016/j.cell.2010.08.010 CrossRefPubMedGoogle Scholar
  56. Melendez J, Patel M, Oakes BL, Xu P, Morton P, McClean MN (2014) Real-time optogenetic control of intracellular protein concentration in microbial cell cultures. Integr Biol (Camb) 6(3):366–372. doi:10.1039/c3ib40102b CrossRefGoogle Scholar
  57. Milias-Argeitis A, Rullan M, Aoki SK, Buchmann P, Khammash M (2016) Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nat Commun 7:12546. doi:10.1038/ncomms12546 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mokdad-Gargouri R, Abdelmoula-Soussi S, Hadiji-Abbes N, Amor IY, Borchani-Chabchoub I, Gargouri A (2012) Yeasts as a tool for heterologous gene expression. Methods Mol Biol 824:359–370. doi:10.1007/978-1-61779-433-9_18 CrossRefPubMedGoogle Scholar
  59. Montenegro-Montero A, Canessa P, Larrondo LF (2015) Around the fungal clock: recent advances in the molecular study of circadian clocks in Neurospora and other fungi. Adv Genet 92:107–184. doi:10.1016/bs.adgen.2015.09.003 PubMedGoogle Scholar
  60. Motta-Mena LB, Reade A, Mallory MJ, Glantz S, Weiner OD, Lynch KW, Gardner KH (2014) An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol 10(3):196–202. doi:10.1038/nchembio.1430 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Müller K, Engesser R, Metzger S, Schulz S, Kampf MM, Busacker M, Steinberg T, Tomakidi P, Ehrbar M, Nagy F, Timmer J, Zubriggen MD, Weber W (2013a) A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res 41(7):e77. doi:10.1093/nar/gkt002 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Müller K, Engesser R, Schulz S, Steinberg T, Tomakidi P, Weber CC, Ulm R, Timmer J, Zurbriggen MD, Weber W (2013b) Multi-chromatic control of mammalian gene expression and signaling. Nucleic Acids Res 41(12):e124. doi:10.1093/nar/gkt340 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Müller K, Engesser R, Timmer J, Nagy F, Zurbriggen MD, Weber W (2013c) Synthesis of phycocyanobilin in mammalian cells. Chem Commun (Camb) 49(79):8970–8972. doi:10.1039/c3cc45065a CrossRefGoogle Scholar
  64. Müller K, Engesser R, Timmer J, Zurbriggen MD, Weber W (2014a) Orthogonal optogenetic triple-gene control in mammalian cells. ACS Synth Biol 3(11):796–801. doi:10.1021/sb500305v CrossRefPubMedGoogle Scholar
  65. Müller K, Siegel D, Rodriguez Jahnke F, Gerrer K, Wend S, Decker EL, Reski R, Weber W, Zurbriggen MD (2014b) A red light-controlled synthetic gene expression switch for plant systems. Mol BioSyst 10(7):1679–1688. doi:10.1039/c3mb70579j CrossRefPubMedGoogle Scholar
  66. Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M (2015) CRISPR-Cas9-based photoactivatable transcription system. Chem Biol 22(2):169–174. doi:10.1016/j.chembiol.2014.12.011 CrossRefPubMedGoogle Scholar
  67. Niopek D, Benzinger D, Roensch J, Draebing T, Wehler P, Eils R, Di Ventura B (2014) Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat Commun 5:4404. doi:10.1038/ncomms5404 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532. doi:10.1038/nature12051 CrossRefPubMedGoogle Scholar
  69. Pathak GP, Vrana JD, Tucker CL (2013) Optogenetic control of cell function using engineered photoreceptors. Biol Cell 105(2):59–72. doi:10.1111/boc.201200056 CrossRefPubMedGoogle Scholar
  70. Pathak GP, Strickland D, Vrana JD, Tucker CL (2014) Benchmarking of optical dimerizer systems. ACS Synth Biol 3(11):832–838. doi:10.1021/sb500291r CrossRefPubMedPubMedCentralGoogle Scholar
  71. Polstein LR, Gersbach CA (2012) Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J Am Chem Soc 134(40):16480–16483. doi:10.1021/ja3065667 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Polstein LR, Gersbach CA (2015) A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11(3):198–200. doi:10.1038/nchembio.1753 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pudasaini A, El-Arab KK, Zoltowski BD (2015) LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Front Mol Biosci 2:18. doi:10.3389/fmolb.2015.00018 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Purschwitz J, Muller S, Kastner C, Schoser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 18(4):255–259. doi:10.1016/j.cub.2008.01.061 CrossRefPubMedGoogle Scholar
  75. Purschwitz J, Muller S, Fischer R (2009) Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the white collar protein LreB. Mol Gen Genomics 281(1):35–42. doi:10.1007/s00438-008-0390-x CrossRefGoogle Scholar
  76. Renicke C, Schuster D, Usherenko S, Essen LO, Taxis C (2013) A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem Biol 20(4):619–626. doi:10.1016/j.chembiol.2013.03.005 CrossRefPubMedGoogle Scholar
  77. Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schafer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332(6025):103–106. doi:10.1126/science.1200660 CrossRefPubMedGoogle Scholar
  78. Robertson JB, Davis CR, Johnson CH (2013) Visible light alters yeast metabolic rhythms by inhibiting respiration. Proc Natl Acad Sci U S A 110(52):21130–21135. doi:10.1073/pnas.1313369110 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Schierling B, Pingoud A (2012) Controlling the DNA cleavage activity of light-inducible chimeric endonucleases by bidirectional photoactivation. Bioconjug Chem 23(6):1105–1109. doi:10.1021/bc3001326 CrossRefPubMedGoogle Scholar
  80. Schmidt D, Cho YK (2015) Natural photoreceptors and their application to synthetic biology. Trends Biotechnol 33(2):80–91. doi:10.1016/j.tibtech.2014.10.007 CrossRefPubMedGoogle Scholar
  81. Shimizu-Sato S, Huq E, Tepperman JM, Quail PH (2002) A light-switchable gene promoter system. Nat Biotechnol 20(10):1041–1044. doi:10.1038/nbt734 CrossRefPubMedGoogle Scholar
  82. Sorokina O, Kapus A, Terecskei K, Dixon LE, Kozma-Bognar L, Nagy F, Millar AJ (2009) A switchable light-input, light-output system modelled and constructed in yeast. J Biol Eng 3:15. doi:10.1186/1754-1611-3-15 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Strickland D, Moffat K, Sosnick TR (2008) Light-activated DNA binding in a designed allosteric protein. Proc Natl Acad Sci U S A 105(31):10709–10714. doi:10.1073/pnas.0709610105 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Strickland D, Lin Y, Wagner E, Hope CM, Zayner J, Antoniou C, Sosnick TR, Weiss EL, Glotzer M (2012) TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat Methods 9(4):379–384. doi:10.1038/nmeth.1904 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Taslimi A, Zoltowski B, Miranda JG, Pathak GP, Hughes RM, Tucker CL (2016) Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase. Nat Chem Biol 12(6):425–430. doi:10.1038/nchembio.2063 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Toettcher JE, Gong D, Lim WA, Weiner OD (2011) Light-based feedback for controlling intracellular signaling dynamics. Nat Methods 8(10):837–839. doi:10.1038/nmeth.1700 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Toettcher JE, Weiner OD, Lim WA (2013) Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155(6):1422–1434. doi:10.1016/j.cell.2013.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Tran MT, Tanaka J, Hamada M, Sugiyama Y, Sakaguchi S, Nakamura M, Takahashi S, Miwa Y (2014) In vivo image analysis using iRFP transgenic mice. Exp Anim 63(3):311–319CrossRefPubMedPubMedCentralGoogle Scholar
  89. Tsai CS, Kwak S, Turner TL, Jin YS (2014) Yeast synthetic biology toolbox and applications for biofuel production. FEMS Yeast Res. doi:10.1111/1567-1364.12206 PubMedPubMedCentralGoogle Scholar
  90. Tyszkiewicz AB, Muir TW (2008) Activation of protein splicing with light in yeast. Nat Methods 5(4):303–305. doi:10.1038/nmeth.1189 PubMedGoogle Scholar
  91. Usherenko S, Stibbe H, Musco M, Essen LO, Kostina EA, Taxis C (2014) Photo-sensitive degron variants for tuning protein stability by light. BMC Syst Biol 8:128. doi:10.1186/s12918-014-0128-9 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Vos T, de la Torre CP, van Gulik WM, Pronk JT, Daran-Lapujade P (2015) Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain. Microb Cell Factories 14:133. doi:10.1186/s12934-015-0321-6 CrossRefGoogle Scholar
  93. Wang X, Chen X, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9(3):266–269. doi:10.1038/nmeth.1892 CrossRefPubMedGoogle Scholar
  94. Wang Z, Li N, Li J, Dunlap JC, Trail F, Townsend JP (2016) The fast-evolving phy-2 gene modulates sexual development in response to light in the model fungus Neurospora crassa. MBio 7(2):e02148. doi:10.1128/mBio.02148-15 PubMedPubMedCentralGoogle Scholar
  95. Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, Hahn KM (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461(7260):104–108. doi:10.1038/nature08241 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P, Deng H, Wang J, Deng X, Shi Y (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484(7393):214–219. doi:10.1038/nature10931 CrossRefPubMedGoogle Scholar
  97. Yang X, Jost AP, Weiner OD, Tang C (2013) A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast. Mol Biol Cell 24(15):2419–2430. doi:10.1091/mbc.E13-03-0126 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Yazawa M, Sadaghiani AM, Hsueh B, Dolmetsch RE (2009) Induction of protein-protein interactions in live cells using light. Nat Biotechnol 27(10):941–945. doi:10.1038/nbt.1569 CrossRefPubMedGoogle Scholar
  99. Zhu Y, Tepperman JM, Fairchild CD, Quail PH (2000) Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3. Proc Natl Acad Sci U S A 97(24):13419–13424. doi:10.1073/pnas.230433797 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Zoltowski BD, Vaccaro B, Crane BR (2009) Mechanism-based tuning of a LOV domain photoreceptor. Nat Chem Biol 5(11):827–834. doi:10.1038/nchembio.210 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Francisco Salinas
    • 1
    • 2
  • Vicente Rojas
    • 1
    • 2
  • Verónica Delgado
    • 1
    • 2
  • Eduardo Agosin
    • 2
    • 3
  • Luis F. Larrondo
    • 1
    • 2
  1. 1.Departamento de Genética Molecular y Microbiología, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB)SantiagoChile
  3. 3.Department of Chemical and Bioprocess Engineering, School of EngineeringPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations