Applied Microbiology and Biotechnology

, Volume 101, Issue 10, pp 4033–4040 | Cite as

Enhancing fungal production of galactaric acid

Biotechnological products and process engineering


Galactaric (mucic) acid is a symmetrical six carbon diacid which can be produced by oxidation of galactose with nitric acid, electrolytic oxidation of d-galacturonate or microbial conversion of d-galacturonate. Both salts and the free acid of galactarate have relatively low solubility, which may create challenges for a microbial host. Galactaric acid was most soluble at pH values around 4.7 in the presence of ammonium or sodium ions and less soluble in the presence of potassium ions. Solubility increased with increasing temperature. Production of galactaric acid by Trichoderma reesei D-161646 was dependent on temperature, pH and medium composition, being best at pH 4 and 35 °C. Up to 20 g L−1 galactaric acid were produced from d-galacturonate using a fed-batch strategy with lactose as co-substrate and both ammonium and yeast extract as nitrogen sources. Crystals of galactaric acid were observed to form in the broth of some fermentations.


Trichoderma reesei Galactaric acid Mucic acid Solubility d-galacturonate 



This research was supported by the VTT BioEconomy Programme. We thank Merja Aarnio for technical assistance.

Compliance with ethical standards


This study was funded through the VTT BioEconomy Programme.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Dragosits M, Frascotti G, Bernard-Granger L, Vázquez F, Giuliani M, Baumann K, Rodríguez-Carmona E, Tokkanen J, Parrilli E, Wiebe MG, Kunert R, Maurer M, Gasser B, Sauer M, Branduardi P, Pakula T, Saloheimo M, Penttilä M, Ferrer P, Luisa Tutino M, Villaverde A, Porro D, Mattanovich D (2011) Influence of growth temperature on the production of antibody Fab fragments in different microbes: a host comparative analysis. Biotechnol Prog 27:38–46. doi:10.1002/btpr.524 CrossRefPubMedGoogle Scholar
  2. Fauvarque J-F, Christophe G, Petit S, Baynast DR (1994) The prepn of galactaric acid from galacturonic acid. FR2699937 A1Google Scholar
  3. Fischer E, Hertz J (1892) Reduction of mucic acid. J Chem Soc Abstr 62:824–827Google Scholar
  4. Jambunathan P, Zhang K (2016) Engineered biosynthesis of biodegradable polymers. J Ind Microbiol Biotechnol 43:1037–1058. doi:10.1007/s10295-016-1785-z CrossRefPubMedGoogle Scholar
  5. Kiely DE, Kirk RHS (2010) Method of oxidation using nitric acid. US7692041 B2Google Scholar
  6. Kiely DE, Chen L, Lin T-H (2000) Synthetic polyhydroxypolyamides from galactaric, xylaric, D-glucaric, and D-mannaric acids and alkylenediamine monomers—some comparisons. J Polym Sci Part a-Polymer Chem 38:594–603CrossRefGoogle Scholar
  7. Kuivanen J, Dantas H, Mojzita D, Mallmann E, Biz A, Krieger N, Mitchell D, Richard P (2014) Conversion of orange peel to L-galactonic acid in a consolidated process using engineered strains of Aspergillus niger. AMB Express 4:33. doi:10.1186/s13568-014-0033-z CrossRefPubMedPubMedCentralGoogle Scholar
  8. Lewkowski J (2001) Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives. ARKIVOC 17–54Google Scholar
  9. Mehtiö T, Toivari M, Wiebe MG, Harlin A, Penttilä M, Koivula A (2015) Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals. Crit Rev Biotechnol 8551:1–13. doi:10.3109/07388551.2015.1060189 CrossRefGoogle Scholar
  10. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277. doi:10.1016/j.pbi.2008.03.006 CrossRefPubMedGoogle Scholar
  11. Mojzita D, Wiebe M, Hilditch S, Boer H, Penttilä M, Richard P (2010) Metabolic engineering of fungal strains for conversion of D-galacturonate to meso-galactarate. Appl Environ Microbiol 76:169–175. doi:10.1128/AEM.02273-09 CrossRefPubMedGoogle Scholar
  12. Müller-Maatsch J, Bencivenni M, Caligiani A, Tedeschi T, Bruggeman G, Bosch M, Petrusan J, Van Droogenbroeck B, Elst K, Sforza S (2016) Pectin content and composition from different food waste streams in memory of Anna Surribas, scientist and friend. Food Chem 201:37–45. doi:10.1016/j.foodchem.2016.01.012 CrossRefPubMedGoogle Scholar
  13. O’Neil MJ, Smith A, Heckelman PE, Obenchain JRJ, Gallipeau JAR, D’Arecca MA, Budavari S (eds) (2001) The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 13th edn. Merck Research Laboratories, Whitehouse StationGoogle Scholar
  14. Richard P, Hilditch S (2009) D-galacturonic acid catabolism in microorganisms and its biotechnological relevance. Appl Microbiol Biotechnol 82:597–604. doi:10.1007/s00253-009-1870-6 CrossRefPubMedGoogle Scholar
  15. Singh OV, Kumar R (2007) Biotechnological production of gluconic acid: future implications. Appl Microbiol Biotechnol 75:713–722. doi:10.1007/s00253-007-0851-x CrossRefPubMedGoogle Scholar
  16. Souffriau B, den Abt T, Thevelein JM (2012) Evidence for rapid uptake of D-galacturonic acid in the yeast Saccharomyces cerevisiae by a channel-type transport system. FEBS Lett 586:2494–2499. doi:10.1016/j.febslet.2012.06.012 CrossRefPubMedGoogle Scholar
  17. Toivari M, Vehkomäki ML, Nygård Y, Penttilä M, Ruohonen L, Wiebe MG (2013) Low pH D-xylonate production with Pichia kudriavzevii. Bioresour Technol 133:555–562. doi:10.1016/j.biortech.2013.01.157 CrossRefPubMedGoogle Scholar
  18. Zhang H, Li X, Su X, Ang EL, Zhang Y, Zhao H (2016) Production of adipic acid from sugar beet residue by combined biological and chemical catalysis. ChemCatChem 8:1500–1506. doi:10.1002/cctc.201600069 CrossRefGoogle Scholar
  19. Zhu Y, Ni J, Huang W (2010) Process optimization for the production of diosgenin with Trichoderma reesei. Bioprocess Biosyst Eng 33:647–655. doi:10.1007/s00449-009-0390-1 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.VTT Technical Research Centre of Finland Ltd.EspooFinland

Personalised recommendations