Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 6, pp 2447–2465 | Cite as

Comparative proteomic and metabolomic analysis of Streptomyces tsukubaensis reveals the metabolic mechanism of FK506 overproduction by feeding soybean oil

  • Jun Wang
  • Huanhuan Liu
  • Di Huang
  • Lina Jin
  • Cheng Wang
  • Jianping WenEmail author
Genomics, transcriptomics, proteomics

Abstract

FK506 (tacrolimus) is a 23-membered polyketide macrolide that possesses powerful immunosuppressant activity. In this study, feeding soybean oil into the fermentation culture of Streptomyces tsukubaensis improved FK506 production by 88.8%. To decipher the overproduction mechanism, comparative proteomic and metabolomic analysis was carried out. A total of 72 protein spots with differential expression in the two-dimensional gel electrophoresis (2-DE) were identified by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS), and 66 intracellular metabolites were measured by gas chromatography-mass spectrometer (GC-MS). The analysis of proteome and metabolome indicated that feeding soybean oil as a supplementary carbon source could not only strengthen the FK506 precursor metabolism and energy metabolism but also tune the pathways related to transcriptional regulation, translation, and stress response, suggesting a better intracellular metabolic environment for the synthesis of FK506. Based on these analyses, 20 key metabolites and precursors of FK506 were supplemented into the soybean oil medium. Among them, lysine, citric acid, shikimic acid, and malonic acid performed excellently for promoting the FK506 production and biomass. Especially, the addition of malonic acid achieved the highest FK506 production, which was 1.56-fold of that in soybean oil medium and 3.05-fold of that in initial medium. This report represented the first comprehensive study on the comparative proteomics and metabolomics applied in S. tsukubaensis, and it would be a rational guidance to further strengthen the FK506 production.

Keywords

Streptomyces tsukubaensis Soybean oil FK506 Comparative proteomics Metabolomics 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21376171), the key technologies R & D program of Tianjin (No. 16YFZCSY00780), the National 973 Project of China (No. 2013CB733600), and the Key Program of National Natural Science Foundation of China (No. 21236005).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Andexer JN, Kendrew SG, Nur-e-Alam M, Lazos O, Foster TA, Zimmermann AS, Warneck TD, Suthar D, Coates NJ, Koehn FE, Skotnicki JS, Carter GT, Gregory MA, Martin CJ, Moss SJ, Leadlay PF, Wilkinson B (2011) Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proc Natl Acad Sci U S A 108(12):4776–4781. doi: 10.1073/pnas.1015773108 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arnstein H, Bentley R (1953) The biosynthesis of kojic acid. 2. The occurrence of aldolase and triosephosphate isomerase in Aspergillus species and their relationship to kojic acid biosynthesis. Biochem J 54(3):508–516CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ban YH, Park SR, Yoon YJ (2016) The biosynthetic pathway of FK506 and its engineering: from past achievements to future prospects. J Ind Microbiol Biotechnol 43(2–3):389–400. doi: 10.1007/s10295-015-1677-7 CrossRefPubMedGoogle Scholar
  4. Barreiro C, Martinez-Castro M (2014) Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506). Appl Microbiol Biotechnol 98(2):497–507. doi: 10.1007/s00253-013-5362-3 CrossRefPubMedGoogle Scholar
  5. Barreiro C, Prieto C, Sola-Landa A, Solera E, Martinez-Castro M, Perez-Redondo R, Garcia-Estrada C, Aparicio JF, Fernandez-Martinez LT, Santos-Aberturas J, Salehi-Najafabadi Z, Rodriguez-Garcia A, Tauch A, Martin JF (2012) Draft genome of Streptomyces tsukubaensis NRRL 18488, the producer of the clinically important immunosuppressant tacrolimus (FK506). J Bacteriol 194(14):3756–3757. doi: 10.1128/JB.00692-12 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8(2):208–215. doi: 10.1016/j.mib.2005.02.016 CrossRefPubMedGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254CrossRefPubMedGoogle Scholar
  8. Burns KE, Cerda-Maira FA, Wang T, Li H, Bishai WR, Darwin KH (2010) “Depupylation” of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates. Mol Cell 39(5):821–827. doi: 10.1016/j.molcel.2010.07.019 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chahinian H, Nini L, Boitard E, Dubès J-P, Comeau L-C, Sarda L (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37(7):653–662. doi: 10.1007/s11745-002-0946-7 CrossRefPubMedGoogle Scholar
  10. Chatterji D, Ojha AK (2001) Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol 4(2):160–165. doi: 10.1016/S1369-5274(00)00182-X CrossRefPubMedGoogle Scholar
  11. Chen D, Zhang Q, Zhang Q, Cen P, Xu Z, Liu W (2012) Improvement of FK506 production in Streptomyces tsukubaensis by genetic enhancement of the supply of unusual polyketide extender units via utilization of two distinct site-specific recombination systems. Appl Environ Microbiol 78(15):5093–5103. doi: 10.1128/AEM.00450-12 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ding M-Z, Cheng J-S, Xiao W-H, Qiao B, Yuan Y-J (2008) Comparative metabolomic analysis on industrial continuous and batch ethanol fermentation processes by GC-TOF-MS. Metabolomics 5(2):229–238. doi: 10.1007/s11306-008-0145-z CrossRefGoogle Scholar
  13. Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. doi: 10.1021/ac60111a017 CrossRefGoogle Scholar
  14. Dumont F, Garrity GM, Fernandez IM, Matas TD (1992) Process for producing FK-506. US Patent 5,116,756. 1992–5-26Google Scholar
  15. Flardh K, Findlay KC, Chater KF (1999) Association of early sporulation genes with suggested developmental decision points in Streptomyces coelicolor A3(2). Microbiology 145(9):2229–2243. doi: 10.1099/00221287-145-9-2229 CrossRefPubMedGoogle Scholar
  16. Francklyn C, Perona JJ, Puetz J, Hou YM (2002) Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation. RNA 8(11):1363–1372. doi: 10.1017/S1355838202021180 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gao C, Hindra MD, Yin C, Elliot MA (2012) Crp is a global regulator of antibiotic production in streptomyces. MBio 3(6):e00407–e00412. doi: 10.1128/mBio.00407-12 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Garcia-Villalba R, Leon C, Dinelli G, Segura-Carretero A, Fernandez-Gutierrez A, Garcia-Canas V, Cifuentes A (2008) Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight mass spectrometry. J Chromatogr A 1195(1–2):164–173. doi: 10.1016/j.chroma.2008.05.018 CrossRefPubMedGoogle Scholar
  19. Goranovic D, Kosec G, Mrak P, Fujs S, Horvat J, Kuscer E, Kopitar G, Petkovic H (2010) Origin of the allyl group in FK506 biosynthesis. J Biol Chem 285(19):14292–14300. doi: 10.1074/jbc.M109.059600 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Goranovic D, Blazic M, Magdevska V, Horvat J, Kuscer E, Polak T, Santos-Aberturas J, Martinez-Castro M, Barreiro C, Mrak P, Kopitar G, Kosec G, Fujs S, Martin JF, Petkovic H (2012) FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis. BMC Microbiol 12(1):238. doi: 10.1186/1471-2180-12-238 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hamedi J, Malekzadeh F, Niknam V (2002) Improved production of erythromycin by Saccharopolyspora erythraea by various plant oils. Biotechnol Lett 24(9):697–700. doi: 10.1023/A:1015282016388 CrossRefGoogle Scholar
  22. Hillerich B, Westpheling J (2006) A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J Bacteriol 188(21):7477–7487. doi: 10.1128/JB.00898-06 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Huang D, Li S, Xia M, Wen J, Jia X (2013a) Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement. Microb Cell Factories 12(1):52. doi: 10.1186/1475-2859-12-52 CrossRefGoogle Scholar
  24. Huang D, Xia M, Li S, Wen J, Jia X (2013b) Enhancement of FK506 production by engineering secondary pathways of Streptomyces tsukubaensis and exogenous feeding strategies. J Ind Microbiol Biotechnol 40(9):1023–1037. doi: 10.1007/s10295-013-1301-7 CrossRefPubMedGoogle Scholar
  25. Imanaka H, Yamatsu A, Fukui T, Atomi H, Imanaka T (2006) Phosphoenolpyruvate synthase plays an essential role for glycolysis in the modified Embden-Meyerhof pathway in Thermococcus kodakarensis. Mol Microbiol 61(4):898–909. doi: 10.1111/j.1365-2958.2006.05287.x CrossRefPubMedGoogle Scholar
  26. Kim HS, Park YI (2008) Isolation and identification of a novel microorganism producing the immunosuppressant tacrolimus. J Biosci Bioeng 105(4):418–421. doi: 10.1263/jbb.105.418 CrossRefPubMedGoogle Scholar
  27. Konofaos P, Terzis JK (2013) FK506 and nerve regeneration: past, present, and future. J Reconstr Microsurg 29(3):141–148. doi: 10.1055/s-0032-1333314 CrossRefPubMedGoogle Scholar
  28. Kosec G, Goranovic D, Mrak P, Fujs S, Kuscer E, Horvat J, Kopitar G, Petkovic H (2012) Novel chemobiosynthetic approach for exclusive production of FK506. Metab Eng 14(1):39–46. doi: 10.1016/j.ymben.2011.11.003 CrossRefPubMedGoogle Scholar
  29. Lu SC (2000) S-Adenosylmethionine. Int J Biochem Cell B 32(4):391–395. doi: 10.1016/s1357-2725(99)00139-9 CrossRefGoogle Scholar
  30. Lv YJ, Wang X, Ma Q, Bai X, Li BZ, Zhang W, Yuan YJ (2014) Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress. Appl Microbiol Biotechnol 98(5):2207–2221. doi: 10.1007/s00253-014-5519-8 CrossRefPubMedGoogle Scholar
  31. Martinez-Castro M, Solera E, Martin JF, Barreiro C (2009) Efficient pyramidal arrangement of an ordered cosmid library: rapid screening of genes of the tacrolimus-producer Streptomyces sp. ATCC 55098. J Microbiol Methods 78(2):150–154. doi: 10.1016/j.mimet.2009.05.005 CrossRefPubMedGoogle Scholar
  32. Martinez-Castro M, Barreiro C, Romero F, Fernandez-Chimeno RI, Martin JF (2011) Streptomyces tacrolimicus sp. nov., a low producer of the immunosuppressant tacrolimus (FK506). Int J Syst Evol Microbiol 61(Pt 5):1084–1088. doi: 10.1099/ijs.0.024273-0 CrossRefPubMedGoogle Scholar
  33. Martinez-Castro M, Salehi-Najafabadi Z, Romero F, Perez-Sanchiz R, Fernandez-Chimeno RI, Martin JF, Barreiro C (2013) Taxonomy and chemically semi-defined media for the analysis of the tacrolimus producer ‘Streptomyces tsukubaensis’. Appl Microbiol Biotechnol 97(5):2139–2152. doi: 10.1007/s00253-012-4364-x CrossRefPubMedGoogle Scholar
  34. Meier-Kriesche HU, Li S, Gruessner RW, Fung JJ, Bustami RT, Barr ML, Leichtman AB (2006) Immunosuppression: evolution in practice and trends, 1994-2004. Am J Transplant 6(5 Pt 2):1111–1131. doi: 10.1111/j.1600-6143.2006.01270.x CrossRefPubMedGoogle Scholar
  35. Meingassner JG, Stutz A (1992) Immunosuppressive macrolides of the type FK506: a novel class of topical agents for treatment of skin diseases ? J Invest Dermatol 98(6):851–855. doi: 10.1111/1523-1747.ep12456939 CrossRefPubMedGoogle Scholar
  36. Meng L, Yang SH, Palaniyandi SA, Lee SK, Lee IA, Kim TJ, Suh JW (2011) Phosphoprotein affinity purification identifies proteins involved in S-adenosyl-L-methionine-induced enhancement of antibiotic production in Streptomyces coelicolor. J Antibiot (Tokyo) 64(1):97–101. doi: 10.1038/ja.2010.148 CrossRefGoogle Scholar
  37. Mishra A, Verma S (2012) Optimization of process parameters for tacrolimus (FK 506) production by new isolate of Streptomyces sp. using response surface methodology (RSM). J Biochem Tech 3(4):419–425Google Scholar
  38. Mo S, Lee SK, Jin YY, Oh CH, Suh JW (2013) Application of a combined approach involving classical random mutagenesis and metabolic engineering to enhance FK506 production in Streptomyces sp. RM7011. Appl Microbiol Biotechnol 97(7):3053–3062. doi: 10.1007/s00253-012-4413-5 CrossRefPubMedGoogle Scholar
  39. Motamedi H, Shafiee A (1998) The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur J Biochem 256(3):528–534. doi: 10.1046/j.1432-1327.1998.2560528.x CrossRefPubMedGoogle Scholar
  40. Motamedi H, Shafiee A, Cai SJ, Streicher SL, Arison BH, Miller RR (1996) Characterization of methyltransferase and hydroxylase genes involved in the biosynthesis of the immunosuppressants FK506 and FK520. J Bacteriol 178(17):5243–5248CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ochi K (1987) Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: significance of the stringent response (ppGpp) and GTP content in relation to A factor. J Bacteriol 169(8):3608–3616. doi: 10.1128/jb.169.8.3608-3616.1987 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pohl NL, Hans M, Lee HY, Kim YS, Cane DE, Khosla C (2001) Remarkably broad substrate tolerance of malonyl-CoA synthetase, an enzyme capable of intracellular synthesis of polyketide precursors. J Am Chem Soc 123(24):5822–5823. doi: 10.1021/ja0028368 CrossRefPubMedGoogle Scholar
  43. Qi H, Zhao S, Fu H, Wen J, Jia X (2014) Enhancement of ascomycin production in Streptomyces hygroscopicus var. ascomyceticus by combining resin HP20 addition and metabolic profiling analysis. J Ind Microbiol Biotechnol 41(9):1365–1374. doi: 10.1007/s10295-014-1473-9 CrossRefPubMedGoogle Scholar
  44. Reynolds KA, Demain AL (1997) Rapamycin, FK506 and ascomycin-related compounds. In: WR S (ed) Drugs and the pharmaceutical sciences. vol 19971072. Dekker, New York, Biotechnology of antibiotics, 2nd, pp 497–520Google Scholar
  45. Sacheti P, Patil R, Dube A, Bhonsle H, Thombre D, Marathe S, Vidhate R, Wagh P, Kulkarni M, Rapole S, Gade W (2014) Proteomics of arsenic stress in the gram-positive organism Exiguobacterium sp. PS NCIM 5463. Appl Microbiol Biotechnol 98(15):6761–6773. doi: 10.1007/s00253-014-5873-6 CrossRefPubMedGoogle Scholar
  46. Secor J, Cseke C (1988) Inhibition of acetyl-CoA carboxylase activity by haloxyfop and tralkoxydim. Plant Physiol 86(1):10–12. doi: 10.1104/pp.86.1.10 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sierra-Paredes G, Sierra-Marcuno G (2008) Ascomycin and FK506: pharmacology and therapeutic potential as anticonvulsants and neuroprotectants. CNS Neurosci Ther 14(1):36–46. doi: 10.1111/j.1527-3458.2008.00036.x CrossRefPubMedGoogle Scholar
  48. Smith AW, Roche H, Trombe MC, Briles DE, Hakansson A (2002) Characterization of the dihydrolipoamide dehydrogenase from Streptococcus pneumoniae and its role in pneumococcal infection. Mol Microbiol 44(2):431–448. doi: 10.1046/j.1365-2958.2002.02883.x CrossRefPubMedGoogle Scholar
  49. Stirrett K, Denoya C, Westpheling J (2009) Branched-chain amino acid catabolism provides precursors for the type II polyketide antibiotic, actinorhodin, via pathways that are nutrient dependent. J Ind Microbiol Biotechnol 36(1):129–137. doi: 10.1007/s10295-008-0480-0 CrossRefPubMedGoogle Scholar
  50. Strom AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8(2):205–210. doi: 10.1111/j.1365-2958.1993.tb01564.x CrossRefPubMedGoogle Scholar
  51. Sun Y, Ye R (2015) Impact of a novel precursor on FK506 production and key gene transcription in Streptomyces tsukubaensis No. 9993. Res Chem Intermediat 42(4):3351–3358. doi: 10.1007/s11164-015-2215-y CrossRefGoogle Scholar
  52. Susin MF, Baldini RL, Gueiros-Filho F, Gomes SL (2006) GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus. J Bacteriol 188(23):8044–8053. doi: 10.1128/JB.00824-06 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Thykaer J, Nielsen J, Wohlleben W, Weber T, Gutknecht M, Lantz AE, Stegmann E (2010) Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster. Metab Eng 12(5):455–461. doi: 10.1016/j.ymben.2010.05.001 CrossRefPubMedGoogle Scholar
  54. Turlo J, Gajzlerska W, Klimaszewska M, Krol M, Dawidowski M, Gutkowska B (2012) Enhancement of tacrolimus productivity in Streptomyces tsukubaensis by the use of novel precursors for biosynthesis. Enzym Microb Technol 51(6–7):388–395. doi: 10.1016/j.enzmictec.2012.08.008 CrossRefGoogle Scholar
  55. Wallemacq PE, Reding R (1993) FK506 (tacrolimus), a novel immunosuppressant in organ transplantation: clinical, biomedical, and analytical aspects. Clin Chem 39(11 Pt 1):2219–2228PubMedGoogle Scholar
  56. Wang C, Chen J, Hu WJ, Liu JY, Zheng HL, Zhao F (2014) Comparative proteomics reveal the impact of OmcA/MtrC deletion on Shewanella oneidensis MR-1 in response to hexavalent chromium exposure. Appl Microbiol Biotechnol 98(23):9735–9747. doi: 10.1007/s00253-014-6143-3 CrossRefPubMedGoogle Scholar
  57. Wang B, Liu J, Liu H, Huang D, Wen J (2015) Comparative metabolic profiling reveals the key role of amino acids metabolism in the rapamycin overproduction by Streptomyces hygroscopicus. J Ind Microbiol Biotechnol 42(6):949–963. doi: 10.1007/s10295-015-1611-z CrossRefPubMedGoogle Scholar
  58. Wentzel A, Sletta H, Stream C, Ellingsen TE, Bruheim P (2012) Intracellular metabolite pool changes in response to nutrient depletion induced metabolic switching in Streptomyces coelicolor. Metabolites 2(1):178–194. doi: 10.3390/metabo2010178 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wilkins MJ, Callister SJ, Miletto M, Williams KH, Nicora CD, Lovley DR, Long PE, Lipton MS (2011) Development of a biomarker for Geobacter activity and strain composition; proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI). Microb Biotechnol 4(1):55–63. doi: 10.1111/j.1751-7915.2010.00194.x CrossRefPubMedGoogle Scholar
  60. Witkowski A, Joshi AK, Lindqvist Y, Smith S (1999) Conversion of a beta-ketoacyl synthase to a malonyl decarboxylase by replacement of the active-site cysteine with glutamine. Biochemistry 38(36):11643–11650. doi: 10.1021/bi990993h CrossRefPubMedGoogle Scholar
  61. Xia M, Huang D, Li S, Wen J, Jia X, Chen Y (2013) Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis. Biotechnol Bioeng 110(10):2717–2730. doi: 10.1002/bit.24941 CrossRefPubMedGoogle Scholar
  62. Yamamoto K, Hirao K, Oshima T, Aiba H, Utsumi R, Ishihama A (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280(2):1448–1456. doi: 10.1074/jbc.M410104200 CrossRefPubMedGoogle Scholar
  63. Yang Q, Ding X, Liu X, Liu S, Sun Y, Yu Z, Hu S, Rang J, He H, He L, Xia L (2014) Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa. Microb Cell Factories 13(1):27. doi: 10.1186/1475-2859-13-27 CrossRefGoogle Scholar
  64. Yoon YJ, Choi CY (1997) Nutrient effects on FK-506, a new immunosuppressant, production by Streptomyces sp. in a defined medium. J Ferment Bioeng 83(6):599–603. doi: 10.1016/s0922-338x(97)81145-2 CrossRefGoogle Scholar
  65. Zhao J, Davis LC, Verpoorte R (2005a) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333. doi: 10.1016/j.biotechadv.2005.01.003 CrossRefPubMedGoogle Scholar
  66. Zhao K, Liu M, Burgess RR (2005b) The global transcriptional response of Escherichia coli to induced σ32 protein involves σ32 regulon activation followed by inactivation and degradation of σ32 in vivo. J Biol Chem 280(18):17758–17768. doi: 10.1074/jbc.M500393200 CrossRefPubMedGoogle Scholar
  67. Zhao S, Huang D, Qi H, Wen J, Jia X (2013) Comparative metabolic profiling-based improvement of rapamycin production by Streptomyces hygroscopicus. Appl Microbiol Biotechnol 97(12):5329–5341. doi: 10.1007/s00253-013-4852-7 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jun Wang
    • 1
    • 2
  • Huanhuan Liu
    • 1
    • 2
  • Di Huang
    • 3
    • 4
  • Lina Jin
    • 1
    • 2
  • Cheng Wang
    • 1
    • 2
  • Jianping Wen
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of System Bioengineering (Tianjin University), Ministry of EducationTianjinPeople’s Republic of China
  2. 2.SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  3. 3.TEDA School of Biological Sciences and BiotechnologyNankai University, TEDATianjinPeople’s Republic of China
  4. 4.SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjinPeople’s Republic of China

Personalised recommendations