Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 8, pp 3153–3161 | Cite as

Enhancement of succinate yield by manipulating NADH/NAD+ ratio and ATP generation

  • Jiaojiao Li
  • Yikui Li
  • Zhiyong Cui
  • Quanfeng LiangEmail author
  • Qingsheng Qi
Biotechnological products and process engineering

Abstract

We previously engineered Escherichia coli YL104 to efficiently produce succinate from glucose. In this study, we investigated the relationships between the NADH/NAD+ ratio, ATP level, and overall yield of succinate production by using glucose as the carbon source in YL104. First, the use of sole NADH dehydrogenases increased the overall yield of succinate by 7% and substantially decreased the NADH/NAD+ ratio. Second, the soluble fumarate reductase from Saccharomyces cerevisiae was overexpressed to manipulate the anaerobic NADH/NAD+ ratio and ATP level. Third, another strategy for reducing the ATP level was applied by introducing ATP futile cycling for improving succinate production. Finally, a combination of these methods exerted a synergistic effect on improving the overall yield of succinate, which was 39% higher than that of the previously engineered strain YL104. The study results indicated that regulation of the NADH/NAD+ ratio and ATP level is an efficient strategy for succinate production.

Keywords

Succinate yield NADH/NAD+ ratio ATP generation NADH dehydrogenases Soluble fumarate reductases ATP futile cycling 

Notes

Acknowledgements

This work was financially supported by a grant from the National Basic Research Program of China (2012CB725202), a grant from the National Natural Science Foundation of China (31170097, 31370085), and a grant from the Shandong Science and Technology Development Plan (2015GSF121042).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2017_8127_MOESM1_ESM.pdf (183 kb)
ESM 1 (PDF 182 kb)

References

  1. Ahn JH, Jang YS, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66CrossRefPubMedGoogle Scholar
  2. Becker S, Vlad D, Schuster S, Pfeiffer P, Unden G (1997) Regulatory O2 tensions for the synthesis of fermentation products in Escherichia coli and relation to aerobic respiration. Arch Microbiol 168(4):290–296CrossRefPubMedGoogle Scholar
  3. Bekker M, de Vries S, Ter Beek A, Hellingwerf K, de Mattos MT (2009) Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase. J Bacteriol 191(17):5510–5517CrossRefPubMedPubMedCentralGoogle Scholar
  4. Besteiro S, Biran M, Biteau N, Coustou V, Baltz T, Canioni P, Bringaud F (2002) Succinate secreted by Trypanosoma brucei is produced by a novel and unique glycosomal enzyme, NADH-dependent fumarate reductase. J Biol Chem 277(41):38001–38012CrossRefPubMedGoogle Scholar
  5. Borisov VB, Murali R, Verkhovskaya ML, Bloch DA, Han H, Gennis RB, Verkhovsky MI (2011) Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode. Proc Natl Acad Sci U S A 108(42):17320–17324CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cabrera R, Baez M, Pereira HM, Caniuguir A, Garratt RC, Babul J (2011) The crystal complex of phosphofructokinase-2 of Escherichia coli with fructose-6-phosphate: kinetic and structural analysis of the allosteric ATP inhibition. J Biol Chem 286(7):5774–5783CrossRefPubMedGoogle Scholar
  7. Calhoun MW, Oden KL, Gennis RB, de Mattos MJ, Neijssel OM (1993) Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain. J Bacteriol 175(10):3020–3025CrossRefPubMedPubMedCentralGoogle Scholar
  8. Camarasa C, Faucet V, Dequin S (2007) Role in anaerobiosis of the isoenzymes for Saccharomyces cerevisiae fumarate reductase encoded by OSM1 and FRDS1. Yeast 24(5):391–401CrossRefPubMedGoogle Scholar
  9. Chao YP, Liao JC (1994) Metabolic responses to substrate futile cycling in Escherichia coli. J Biol Chem 269(7):5122–5126PubMedGoogle Scholar
  10. Coustou V, Besteiro S, Riviere L, Biran M, Biteau N, Franconi JM, Boshart M, Baltz T, Bringaud F (2005) A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic Trypanosoma brucei. J Biol Chem 280(17):16559–16570CrossRefPubMedGoogle Scholar
  11. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 97(12):6640–6645CrossRefPubMedPubMedCentralGoogle Scholar
  12. de Graef MR, Alexeeva S, Snoep JL, Teixeira de Mattos MJ (1999) The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181(8):2351–2357PubMedPubMedCentralGoogle Scholar
  13. de Jongh WA, Nielsen J (2008) Enhanced citrate production through gene insertion in Aspergillus niger. Metab Eng 10(2):87–96CrossRefPubMedGoogle Scholar
  14. Enomoto K, Arikawa Y, Muratsubaki H (2002) Physiological role of soluble fumarate reductase in redox balancing during anaerobiosis in Saccharomyces cerevisiae. FEMS Microbiol Lett 215(1):103–108CrossRefPubMedGoogle Scholar
  15. Enomoto K, Ohki R, Muratsubaki H (1996) Cloning and sequencing of the gene encoding the soluble fumarate reductase from Saccharomyces cerevisiae. DNA Res 3(4):263–267CrossRefPubMedGoogle Scholar
  16. Forster AH, Gescher J (2014) Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products. Frontiers Biotech Bioeng 2:16Google Scholar
  17. Goldberg I, Lonberg-Holm K, Bagley EA, Stieglitz B (1983) Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase. Appl Environ Microbiol 45(6):1838–1847PubMedPubMedCentralGoogle Scholar
  18. Gordon EH, Pealing SL, Chapman SK, Ward FB, Reid GA (1998) Physiological function and regulation of flavocytochrome c3, the soluble fumarate reductase from Shewanella putrefaciens NCIMB 400. Microbiology 144:937–945CrossRefPubMedGoogle Scholar
  19. Hadicke O, Bettenbrock K, Klamt S (2015) Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli. Biotechnol Bioeng 112(10):2195–2199CrossRefPubMedGoogle Scholar
  20. Kang Z, Gao C, Wang Q, Liu H, Qi Q (2010) A novel strategy for succinate and polyhydroxybutyrate co-production in Escherichia coli. Bioresour Technol 101(19):7675–7678CrossRefPubMedGoogle Scholar
  21. Kihira C, Hayashi Y, Azuma N, Noda S, Maeda S, Fukiya S, Wada M, Matsushita K, Yokota A (2012) Alterations of glucose metabolism in Escherichia coli mutants defective in respiratory-chain enzymes. J Bacteriol 158(4):215–223Google Scholar
  22. Kim Y, Ingram LO, Shanmugam KT (2008) Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. J Bacteriol 190(11):3851–3858CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kuhlman TE, Cox EC (2010) Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res:gkp1193Google Scholar
  24. Leonardo MR, Dailly Y, Clark DP (1996) Role of NAD in regulating the adhE gene of Escherichia coli. J Bacteriol 178(20):6013–6018CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li Y, Huang B, Wu H, Li Z, Ye Q, Zhang YP (2016) Production of succinate from acetate by metabolically engineered Escherichia coli. ACS Synth Biol 5(11):1299–1307PubMedGoogle Scholar
  26. Li Y, Li M, Zhang X, Yang P, Liang Q, Qi Q (2013) A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli. Bioresour Technol 149:333–340CrossRefPubMedGoogle Scholar
  27. Liang L, Liu R, Wang G, Gou D, Ma J, Chen K, Jiang M, Wei P, Ouyang P (2012) Regulation of NAD(H) pool and NADH/NAD+ ratio by overexpression of nicotinic acid phosphoribosyltransferase for succinic acid production in Escherichia coli NZN111. Enzym Microb Technol 51(5):286–293CrossRefGoogle Scholar
  28. Liang LY, Liu RM, Ma JF, Chen KQ, Jiang M, Wei P (2011) Increased production of succinic acid in Escherichia coli by overexpression of malate dehydrogenase. Biotechnol Lett 33(12):2439–2444CrossRefPubMedGoogle Scholar
  29. Liang Q, Qi Q (2014) From a co-production design to an integrated single-cell biorefinery. Biotechnol Adv 32(7):1328–1335CrossRefPubMedGoogle Scholar
  30. Liang Q, Zhang F, Li Y, Zhang X, Li J, Yang P, Qi Q (2015) Comparison of individual component deletions in a glucose-specific phosphotransferase system revealed their different applications. Sci Rep 5:13200CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liu Q, Lin Z, Zhang Y, Li Y, Wang Z, Chen T (2014) Improved poly(3-hydroxybutyrate) production in Escherichia coli by inactivation of cytochrome bd-II oxidase or/and NDH-II dehydrogenase in low efficient respiratory chains. J Bacteriol 192:170–176Google Scholar
  32. Liu R, Liang L, Li F, Wu M, Chen K, Ma J, Jiang M, Wei P, Ouyang P (2013) Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli. Bioresour Technol 149:84–91CrossRefPubMedGoogle Scholar
  33. Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X (2016) High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Microb Cell Factories 15(1):141CrossRefGoogle Scholar
  34. Millard CS, Chao YP, Liao JC, Donnelly MI (1996) Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl Environ Microbiol 62(5):1808–1810PubMedPubMedCentralGoogle Scholar
  35. Muratsubaki H, Enomoto K (1998) One of the fumarate reductase isoenzymes from Saccharomyces cerevisiae is encoded by the OSM1 gene. Arch Biochem Biophys 352(2):175–181CrossRefPubMedGoogle Scholar
  36. Olajuyin AM, Yang M, Liu Y, Mu T, Tian J, Adaramoye OA, Xing J (2016) Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli. Bioresour Technol 214:653–659CrossRefPubMedGoogle Scholar
  37. Patnaik R, Roof WD, Young RF, Liao JC (1992) Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. J Bacteriol 174(23):7527–7532CrossRefPubMedPubMedCentralGoogle Scholar
  38. Portnoy VA, Herrgard MJ, Palsson BO (2008) Aerobic fermentation of D-glucose by an evolved cytochrome oxidase-deficient Escherichia coli strain. Appl Environ Microbiol 74(24):7561–7569CrossRefPubMedPubMedCentralGoogle Scholar
  39. Salusjarvi L, Kaunisto S, Holmstrom S, Vehkomaki ML, Koivuranta K, Pitkanen JP, Ruohonen L (2013) Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 40(12):1383–1392CrossRefPubMedGoogle Scholar
  40. Singh A, Cher Soh K, Hatzimanikatis V, Gill RT (2011) Manipulating redox and ATP balancing for improved production of succinate in E. coli. Metab Eng 13(1):76–81CrossRefPubMedGoogle Scholar
  41. Singh A, Lynch MD, Gill RT (2009) Genes restoring redox balance in fermentation-deficient E. coli NZN111. Metab Eng 11(6):347–354CrossRefPubMedGoogle Scholar
  42. Steinsiek S, Stagge S, Bettenbrock K (2014) Analysis of Escherichia coli mutants with a linear respiratory chain. PLoS One 9(1):e87307CrossRefPubMedPubMedCentralGoogle Scholar
  43. Stols L, Donnelly MI (1997) Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol 63(7):2695–2701PubMedPubMedCentralGoogle Scholar
  44. Stouthamer A (1979) The search for correlation between theoretical and experimental growth yields. Int Rev Biochem 21(1):1–47Google Scholar
  45. Tielens AG, Van Hellemond JJ (1998) The electron transport chain in anaerobically functioning eukaryotes. Biochim Biophys Acta 1365(1–2):71–78CrossRefPubMedGoogle Scholar
  46. Van der Werf MJ, Guettler MV, Jain MK, Zeikus JG (1997) Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiol 167(6):332–342CrossRefPubMedGoogle Scholar
  47. Van Hellemond JJ, Tielens AG (1994) Expression and functional properties of fumarate reductase. The Biochem J 304:321–331CrossRefPubMedGoogle Scholar
  48. Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72(5):3653–3661CrossRefPubMedPubMedCentralGoogle Scholar
  49. Vemuri GN, Eiteman MA, Altman E (2002) Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 68(4):1715–1727CrossRefPubMedPubMedCentralGoogle Scholar
  50. Verkhovskaya ML, Belevich N, Euro L, Wikstrom M, Verkhovsky MI (2008) Real-time electron transfer in respiratory complex I. Proc Natl Acad Sci U S A 105(10):3763–3767CrossRefPubMedPubMedCentralGoogle Scholar
  51. Vuoristo KS, Mars AE, Sanders JP, Eggink G, Weusthuis RA (2016) Metabolic engineering of TCA cycle for production of chemicals. Trends Biotechnol 34(3):191–197CrossRefPubMedGoogle Scholar
  52. Wang C, Yan D, Li Q, Sun W, Xing J (2014) Ionic liquid pretreatment to increase succinic acid production from lignocellulosic biomass. Bioresour Technol 172:283–289CrossRefPubMedGoogle Scholar
  53. Weitzman PD (1981) Unity and diversity in some bacterial citric acid-cycle enzymes. Adv Microb Physiol 22:185–244CrossRefPubMedGoogle Scholar
  54. Werpy T, Petersen G (2004) Volume 1: results of screening for potential candidates from sugars and synthetic gas. Oak Ridge, TN, US Department of EnergyGoogle Scholar
  55. Wu H, Tuli L, Bennett GN, San KY (2015) Metabolic transistor strategy for controlling electron transfer chain activity in Escherichia coli. Metab Eng 28:159–168CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhang F, Li J, Liu H, Liang Q, Qi Q (2016) ATP-based ratio regulation of glucose and xylose improved succinate production. PLoS One 11(6):e0157775CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zhu X, Tan Z, Xu H, Chen J, Tang J, Zhang X (2014) Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab Eng 24:87–96CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jiaojiao Li
    • 1
  • Yikui Li
    • 1
  • Zhiyong Cui
    • 1
  • Quanfeng Liang
    • 1
    Email author
  • Qingsheng Qi
    • 1
  1. 1.State Key Laboratory of Microbial Technology, School of Life ScienceShandong UniversityJinanPeople’s Republic of China

Personalised recommendations