Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 9, pp 3839–3848 | Cite as

Chemically modified surface functional groups of Alcaligenes sp. S-XJ-1 to enhance its demulsifying capability

  • Yuyan Zhang
  • Jia Liu
  • Xiangfeng Huang
  • Lijun Lu
  • Kaiming PengEmail author
Environmental biotechnology
  • 229 Downloads

Abstract

Cell-surface functional groups (amino, carboxyl, hydroxyl, as well as phosphate) were chemically modified in various ways to enhance the demulsification capability of the demulsifying bacteria Alcaligenes sp. S-XJ-1. Results demonstrated that the demulsifying activity was significantly inhibited by amino enrichment with cetyl trimethyl ammonium bromide, amino methylation, hydroxyl acetylation, and phosphate esterification, but was gradually promoted by carboxyl blocking with increasing the extents of esterification. Compared with the raw biomass, an optimal esterification of carboxyl moieties enhanced the demulsification ratio by 26.5% and shortened the emulsion half-life from 24 to 8.8 h. The demulsification boost was found to be dominated by strengthened hydrophobicity (from 53° to 74°) and weakened electronegativity (from −34.6 to −4.3 mV at pH 7.0) of the cell surface, allowing the rapid dispersion and adsorption of cells onto the oil-water interface. The chemical modification of the functional groups on the biomass surface is a promising tool for the creation of a high-performance bacterial demulsifier.

Keywords

Demulsifying bacteria Chemical modification Amino group Carboxyl group 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51478325 and 51608375) and China Postdoctoral Science Foundation (2016M591711).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2017_8111_MOESM1_ESM.pdf (591 kb)
ESM 1 (PDF 591 kb.)

References

  1. Amirabadi SS, Jahanmiri A, Rahimpour MR, nia BR, Darvishi P, Niazi A (2013) Investigation of Paenibacillus alvei ARN63 ability for biodemulsifier production: medium optimization to break heavy crude oil emulsion. Colloids Surf B 109:244–252. doi: 10.1016/j.colsurfb.2013.03.029 CrossRefGoogle Scholar
  2. Bai J, Yao HJ, Fan FL, Lin MS, Zhang LN, Ding HJ, Lei FA, Wu XL, Li XF, Guo JS, Qin Z (2010) Biosorption of uranium by chemically modified Rhodotorula glutinis. J Environ Radioact 101(11):969–973. doi: 10.1016/j.jenvrad.2010.07.003 CrossRefPubMedGoogle Scholar
  3. Bai RS, Abraham TE (2002) Studies on enhancement of Cr (VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Res 36(5):1224–1236. doi: 10.1016/S0043-1354(01)00330-X CrossRefPubMedGoogle Scholar
  4. Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141(2):876–887PubMedPubMedCentralGoogle Scholar
  5. Cairns WL, Cooper DG, Zajic JE (1982) Characterization of Nocardia amarae as a potent biological coalescing agent of water-oil emulsions. Appl Environ Microbiol 43(2):362–366PubMedPubMedCentralGoogle Scholar
  6. Chen G, Chen JL (2013) A novel cell modification method used in biotransformation of glycerol to 3-HPA by Lactobacillus reuteri. Appl Microbiol Biotechnol 97(10):4325–4332. doi: 10.1007/s00253-013-4723-2 CrossRefPubMedGoogle Scholar
  7. Coutinho JOPA, Silva MPS, Moraes PM, Monteiro AS, Barcelos JCC, Siqueira EP, Santos VL (2013) Demulsifying properties of extracellular products and cells of Pseudomonas aeruginosa MSJ isolated from petroleum-contaminated soil. Bioresour Technol 128:646–654. doi: 10.1016/j.biortech.2012.09.137 CrossRefPubMedGoogle Scholar
  8. Daffonchio D, Thaveesri J, Verstraete W (1995) Contact angle measurement and cell hydrophobicity of granular sludge from upflow anaerobic sludge bed reactors. Appl Environ Microbiol 61(10):3676–3680PubMedPubMedCentralGoogle Scholar
  9. Das M (2001) Characterization of de-emulsification capabilities of a Micrococcus species. Bioresour Technol 79(1):15–22. doi: 10.1016/S0960-8524(01)00039-6 CrossRefPubMedGoogle Scholar
  10. Das SK, Das AR, Guha AK (2007) A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass. Environ Sci Technol 41(24):8281–8287. doi: 10.1021/es070814g CrossRefPubMedGoogle Scholar
  11. Das SK, Ghosh P, Ghosh I, Guha AK (2008) Adsorption of rhodamine B on Rhizopus oryzae: role of functional groups and cell wall components. Colloids Surf B 65(1):30–34. doi: 10.1016/j.colsurfb.2008.02.020 CrossRefGoogle Scholar
  12. Duvnjak Z, Kosaric N (1987) Deemulsification of petroleum W/O emulsions by selected bacterial and yeast cells. Biotechnol Lett 9(1):39–42. doi: 10.1007/bf01043390 CrossRefGoogle Scholar
  13. Fang LC, Zhou C, Cai P, Chen WL, Rong XM, Dai K, Liang W, Gu JD, Huang QY (2011) Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis. J Hazard Mater 190(1–3):810–815. doi: 10.1016/j.jhazmat.2011.03.122 CrossRefPubMedGoogle Scholar
  14. Fatima T, Nadeem R, Masood A, Saeed R, Ashraf M (2013) Sorption of lead by chemically modified rice bran. Int J Environ Sci Technol 10(6):1255–1264. doi: 10.1007/s13762-013-0228-x CrossRefGoogle Scholar
  15. Fourest E, Serre A, Roux JC (1996) Contribution of carboxyl groups to heavy metal binding sites in fungal wall. Toxicol Environ Chem 54(1–4):1–10CrossRefGoogle Scholar
  16. Fu YZ, Viraraghavan T (2002) Dye biosorption sites in Aspergillus niger. Bioresour Technol 82(2):139–145. doi: 10.1016/S0960-8524(01)00172-9 CrossRefPubMedGoogle Scholar
  17. Gardea-Torresdey JL, Becker-Hapak MK, Hosea JM, Darnall DW (1990) Effect of chemical modification of algal carboxyl groups on metal ion binding. Environ Sci Technol 24(9):1372–1378CrossRefGoogle Scholar
  18. Gray NCC, Stewart AL, Cairns WL, Kosaric N (1984) Bacteria-induced de-emulsification of oil-in-water petroleum emulsions. Biotechnol Lett 6(7):419–424. doi: 10.1007/bf00129302 CrossRefGoogle Scholar
  19. Guo K, Freguia S, Dennis PG, Chen X, Donose BC, Keller J, Gooding JJ, Rabaey K (2013) Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ Sci Technol 47(13):7563–7570. doi: 10.1021/es400901u PubMedGoogle Scholar
  20. Huang XF, Guan W, Liu J, Lu LJ, Xu JC, Zhou Q (2010) Characterization and phylogenetic analysis of biodemulsifier-producing bacteria. Bioresour Technol 101(1):317–323. doi: 10.1016/j.biortech.2009.07.086 CrossRefPubMedGoogle Scholar
  21. Huang XF, Peng KM, Feng Y, Liu J, Lu LJ (2013) Separation and characterization of effective demulsifying substances from surface of Alcaligenes sp. S-XJ-1 and its application in water-in-kerosene emulsion. Bioresour Technol 139:257–264. doi: 10.1016/j.biortech.2013.04.043 CrossRefPubMedGoogle Scholar
  22. Huang XF, Peng KM, Lu LJ, Wang RF, Liu J (2014) Carbon sources dependence of cell surface composition and demulsifying capability of Alcaligenes sp. S-XJ-1. Environ Sci Technol 48(5):3056–3064. doi: 10.1021/es404636j CrossRefPubMedGoogle Scholar
  23. Huang XF, Xiong YJ, Yin W, Lu LJ, Liu J, Peng KM (2016a) Demulsification of a new magnetically responsive bacterial demulsifier for water-in-oil emulsions. Energy Fuel 30(6):5190–5197. doi: 10.1021/acs.energyfuels.6b00687 CrossRefGoogle Scholar
  24. Huang XF, Zhang YY, Wei YS, Liu J, Lu LJ, Peng KM (2016b) Saponin-enhanced biomass accumulation and demulsification capability of the demulsifying bacteria Alcaligenes sp. S-XJ-1. RSC Adv 6(50):44758–44765. doi: 10.1039/C6RA02237E CrossRefGoogle Scholar
  25. Kousha M, Daneshvar E, Sohrabi MS, Jokar M, Bhatnagar A (2012) Adsorption of acid orange II dye by raw and chemically modified brown macroalga Stoechospermum marginatum. Chem Eng J 192:67–76. doi: 10.1016/j.cej.2012.03.057 CrossRefGoogle Scholar
  26. Li X, Li A, Liu C, Yang JX, Ma F, Hou N, Xu Y, Ren NQ (2012) Characterization of the extracellular biodemulsifier of Bacillus mojavensis XH1 and the enhancement of demulsifying efficiency by optimization of the production medium composition. Process Biochem 47(4):626–634. doi: 10.1016/j.procbio.2012.01.004 CrossRefGoogle Scholar
  27. Liu J, Huang XF, Lu LJ, Xu JC, Wen Y, Yang DH, Zhou Q (2010) Optimization of biodemulsifier production from Alcaligenes sp. S-XJ-1 and its application in breaking crude oil emulsion. J Hazard Mater 183(1–3):466–473. doi: 10.1016/j.jhazmat.2010.07.047 CrossRefPubMedGoogle Scholar
  28. Ly MH, Aguedo M, Goudot S, Le ML, Cayot P, Teixeira JA, Le TM, Belin JM, Wache Y (2008) Interactions between bacterial surfaces and milk proteins, impact on food emulsions stability. Food Hydrocoll 22(5):742–751. doi: 10.1016/j.foodhyd.2007.03.001 CrossRefGoogle Scholar
  29. Mohebali G, Kaytash A, Etemadi N (2012) Efficient breaking of water/oil emulsions by a newly isolated de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1. Colloids Surf B 98:120–128. doi: 10.1016/j.colsurfb.2012.04.037 CrossRefGoogle Scholar
  30. Murphy V, Hughes H, McLoughlin P (2009) Enhancement strategies for Cu(II), Cr(III) and Cr(VI) remediation by a variety of seaweed species. J Hazard Mater 166(1):318–326. doi: 10.1016/j.jhazmat.2008.11.041 CrossRefPubMedGoogle Scholar
  31. Ojeda JJ, Romero-Gonzalez ME, Bachmann RT, Edyvean RGJ, Banwart SA (2008) Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations. Langmuir 24(8):4032–4040. doi: 10.1021/la702284b CrossRefPubMedGoogle Scholar
  32. Panda GC, Das SK, Chatterjee S, Maity PB, Bandopadhyay TS, Guha AK (2006) Adsorption of cadmium on husk of Lathyrus sativus: physico-chemical study. Colloids Surf B 50(1):49–54. doi: 10.1016/j.colsurfb.2006.03.022 CrossRefGoogle Scholar
  33. Park SH, Lee J-H, Ko S-H, Lee D-S, Lee HK (2000) Demulsification of oil-in-water emulsions by aerial spores of a Streptomyces sp. Biotechnol Lett 22(17):1389–1395. doi: 10.1023/a:1005660901558 CrossRefGoogle Scholar
  34. Peng KM, Liu J, Lu LJ, Yin W, Huang XF (2016) Cell surface properties of the demulsifying strain Alcaligenes sp. S-XJ-1 governing its behavior in oil-water biphasic systems. J Adhes Sci Technol 30(2):194–209. doi: 10.1080/01694243.2015.1095674 CrossRefGoogle Scholar
  35. Ramrakhiani L, Majumder R, Khowala S (2011) Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomyces clypeatus: surface characterization and mechanism of biosorption. Chem Eng J 171(3):1060–1068. doi: 10.1016/j.cej.2011.05.002 CrossRefGoogle Scholar
  36. Rijnaarts HHM, Norde W, Lyklema J, Zehnder AJB (1995) The isoelectric point of bacteria as an indicator for the presence of cell-surface polymers that inhibit adhesion. Colloids Surf B 4(4):191–197. doi: 10.1016/0927-7765(94)01164-z CrossRefGoogle Scholar
  37. Stewart AL, Gray NCC, Cairns WL, Kosaric N (1983) Bacteria-induced de-emulsification of water-in-oil petroleum emulsions. Biotechnol Lett 5(11):725–730. doi: 10.1007/BF01386492 CrossRefGoogle Scholar
  38. Turner BF, Fein JB (2006) Protofit: a program for determining surface protonation constants from titration data. Comput Geosci 32(9):1344–1356. doi: 10.1016/j.cageo.2005.12.005 CrossRefGoogle Scholar
  39. van der Mei HC, de Vries J, Busscher HJ (2000) X-ray photoelectron spectroscopy for the study of microbial cell surfaces. Surf Sci Rep 39(1):1–24. doi: 10.1016/S0167-5729(00)00003-0 CrossRefGoogle Scholar
  40. van der Mei HC, van de Belt-Gritter B, Doyle RJ, Busscher HJ (2001) Cell surface analysis and adhesion of chemically modified streptococci. J Colloid Interface Sci 241(2):327–332. doi: 10.1006/jcis.2001.7768 CrossRefGoogle Scholar
  41. van Der Mei HC, van De Belt-Gritter B, Pouwels PH, Martinez B, Busscher HJ (2003) Cell surface hydrophobicity is conveyed by S-layer proteins—a study in recombinant lactobacilli. Colloids Surf B 28(2–3):127–134. doi: 10.1016/S0927-7765(02)00144-3 Google Scholar
  42. Vogler EA (1998) Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interf Sci 74(1–3):69–117. doi: 10.1016/S0001-8686(97)00040-7 CrossRefGoogle Scholar
  43. Warne Zoueki C, Ghoshal S, Tufenkji N (2010) Bacterial adhesion to hydrocarbons: role of asphaltenes and resins. Colloids Surf B 79(1):219–226. doi: 10.1016/j.colsurfb.2010.03.054 CrossRefGoogle Scholar
  44. Wen Y, Cheng H, Lu LJ, Liu J, Feng Y, Guan W, Zhou Q, Huang XF (2010) Analysis of biological demulsification process of water-in-oil emulsion by Alcaligenes sp. S-XJ-1. Bioresour Technol 101(21):8315–8322. doi: 10.1016/j.biortech.2010.05.088 CrossRefPubMedGoogle Scholar
  45. Yang GX, Jiang H (2014) Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res 48:396–405. doi: 10.1016/j.watres.2013.09.050 CrossRefPubMedGoogle Scholar
  46. Yang T, Chen ML, Wang JH (2015) Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC Trends Anal Chem 66:90–102. doi: 10.1016/j.trac.2014.11.016 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education, Key Laboratory of Yangtze River Water EnvironmentTongji UniversityShanghaiChina
  2. 2.Post-Doctoral Research StationTongji UniversityShanghaiChina

Personalised recommendations