Applied Microbiology and Biotechnology

, Volume 101, Issue 4, pp 1359–1364 | Cite as

Cyanobacteria: photosynthetic factories combining biodiversity, radiation resistance, and genetics to facilitate drug discovery

  • Corinne Cassier-Chauvat
  • Vincent Dive
  • Franck Chauvat


Cyanobacteria are ancient, abundant, and widely diverse photosynthetic prokaryotes, which are viewed as promising cell factories for the ecologically responsible production of chemicals. Natural cyanobacteria synthesize a vast array of biologically active (secondary) metabolites with great potential for human health, while a few genetic models can be engineered for the (low level) production of biofuels. Recently, genome sequencing and mining has revealed that natural cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The corresponding panoply of enzymes (polyketide synthases and non-ribosomal peptide synthases) of interest for synthetic biology can still be increased through gene manipulations with the tools available for the few genetically manipulable strains. In this review, we propose to exploit the metabolic diversity and radiation resistance of cyanobacteria, and when required the genetics of model strains, for the production and radioactive (14C) labeling of bioactive products, in order to facilitate the screening for new drugs.


Cyanobacteria Biodiversity Secondary metabolites Toxins Radioactive labeling 



We thank our colleagues Jean Labarre, Gilles Lagniel, Denis Servent, Romulo Araoz, and Nicolas Gilles for helpful discussions.

Compliance with ethical standards


This study was funded by the CEA.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Benwakrim A, Tremoliere A, Labarre J, Capdeville Y (1998) The lipid moiety of the GPI-anchor of the major plasma membrane proteins in Paramecium primaurelia is a ceramide: variation of the amide-linked fatty acid composition as a function of growth temperature. Protist 149(1):39–50. doi: 10.1016/S1434-4610(98)70008-2 CrossRefPubMedGoogle Scholar
  2. Cassier-Chauvat C, Chauvat F (2014) Cell division in cyanobacteria. In: Flores E, Herrero A (eds) The cell biology of cyanobacteria. Caister Academic Press, Norfolk, pp 7–27Google Scholar
  3. Cassier-Chauvat C, Chauvat F (2015) Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances. Int J Mol Sci 16(1):871–886. doi: 10.3390/ijms16010871 CrossRefGoogle Scholar
  4. Cassier-Chauvat C, Veaudor T, Chauvat F (2016) Comparative genomics of DNA recombination and repair in cyanobacteria: biotechnological implications. Front Microbiol 7:1809. doi: 10.3389/fmicb.2016.01809 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chauvat F, Devries L, Vanderende A, Vanarkel GA (1986) A host-vector system for gene cloning in the cyanobacterium Synechocystis Pcc 6803. Molecular & general genetics: MGG 204(1):185–191. doi: 10.1007/Bf00330208 CrossRefGoogle Scholar
  6. Chen CH, Van Baalen C, Tabita FR (1987) DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F. J Bacteriol 169(3):1114–1119CrossRefPubMedPubMedCentralGoogle Scholar
  7. Czarny B, Georgin D, Berthon F, Plastow G, Pinault M, Patriarche G, Thuleau A, L'Hermite MM, Taran F, Dive V (2014) Carbon nanotube translocation to distant organs after pulmonary exposure: insights from in situ (14)C-radiolabeling and tissue radioimaging. ACS Nano 8(6):5715–5724. doi: 10.1021/nn500475u CrossRefPubMedGoogle Scholar
  8. Dittmann E, Gugger M, Sivonen K, Fewer DP (2015) Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol 23(10):642–652. doi: 10.1016/j.tim.2015.07.008 CrossRefPubMedGoogle Scholar
  9. Domain F, Houot L, Chauvat F, Cassier-Chauvat C (2004) Function and regulation of the cyanobacterial genes lexA, recA and ruvB: LexA is critical to the survival of cells facing inorganic carbon starvation. Molecular Microbiol 53(1):65–80. doi: 10.1111/j.1365-2958.2004.04100.x CrossRefGoogle Scholar
  10. Dutheil J, Saenkham P, Sakr S, Leplat C, Ortega-Ramos M, Bottin H, Cournac L, Cassier-Chauvat C, Chauvat F (2012) The AbrB2 autorepressor, expressed from an atypical promoter, represses the hydrogenase operon to regulate hydrogen production in Synechocystis strain PCC6803. J Bacteriol 194(19):5423–5433. doi: 10.1128/JB.00543-12 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Eriksson O, Laughlin M, Brom M, Nuutila P, Roden M, Hwa A, Bonadonna R, Gotthardt M (2016) In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use. Diabetologia 59(7):1340–1349. doi: 10.1007/s00125-016-3959-7 CrossRefPubMedGoogle Scholar
  12. Ferino F, Chauvat F (1989) A promoter-probe vector-host system for the cyanobacterium, Synechocystis PCC6803. Gene 84(2):257–266CrossRefPubMedGoogle Scholar
  13. Grigorieva G, Shestakov S (1982) Transformation in the cyanobacterium Synechocystis sp 6803. FEMS Microbiol Lett 13:367–370CrossRefGoogle Scholar
  14. Hamilton TL, Bryant DA, Macalady JL (2016) The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environmental Microbiol 18(2):325–340. doi: 10.1111/1462-2920.13118 CrossRefGoogle Scholar
  15. Jansson C, Northen T (2010) Calcifying cyanobacteria-the potential of biomineralization for carbon capture and storage. Curr Opin Biotech 21(3):365–371. doi: 10.1016/j.copbio.2010.03.017 CrossRefPubMedGoogle Scholar
  16. Kleigrewe K, Gerwick L, Sherman DH, Gerwick WH (2016) Unique marine derived cyanobacterial biosynthetic genes for chemical diversity. Nat Prod Rep 33(2):348–364. doi: 10.1039/c5np00097a CrossRefPubMedGoogle Scholar
  17. Lehmann M, Wober G (1977) Preparation of [U-14C]-labelled glycogen, maltosaccharides, maltose, and D-glucose by photoassimilation of 14CO2 in Anacystis nidulans and selective enzymic degradation. Carbohydr Res 56(2):357–362CrossRefPubMedGoogle Scholar
  18. Loser R, Pietzsch J (2015) Cysteine cathepsins: their role in tumor progression and recent trends in the development of imaging probes. Front Chem 3:37. doi: 10.3389/Fchem.2015.00037 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Marteyn B, Sakr S, Farci S, Bedhomme M, Chardonnet S, Decottignies P, Lemaire SD, Cassier-Chauvat C, Chauvat F (2013) The Synechocystis PCC6803 MerA-like enzyme operates in the reduction of both mercury and uranium under the control of the glutaredoxin 1 enzyme. J Bacteriol 195(18):4138–4145. doi: 10.1128/JB.00272-13 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Marine drugs 12(2):1066–1101. doi: 10.3390/md12021066 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mazard S, Penesyan A, Ostrowski M, Paulsen IT, Egan S (2016) Tiny microbes with a big impact: the role of cyanobacteria and their metabolites in shaping our future. Marine drugs 14(5). doi: 10.3390/Md14050097
  22. Mermet-Bouvier P, Chauvat F (1994) A conditional expression vector for the cyanobacteria Synechocystis sp. strains PCC6803 and PCC6714 or Synechococcus sp. strains PCC7942 and PCC6301. Curr Microbiol 28(3):145–148. doi: 10.1007/BF01571055
  23. Mermet-Bouvier P, Cassier-Chauvat C, Marraccini P, Chauvat F (1993) Transfer and replication of RSF1010-derived plasmids in several cyanobacteria of the general Synechocystis and Synechococcus. Curr Microbiol 27(6):323–327. doi: 10.1007/Bf01568955 CrossRefGoogle Scholar
  24. Micallef ML, D'Agostino PM, Al-Sinawi B, Neilan BA, Moffitt MC (2015) Exploring cyanobacterial genomes for natural product biosynthesis pathways. Mar Genom 21:1–12. doi: 10.1016/j.margen.2014.11.009 CrossRefGoogle Scholar
  25. Miles CO, Sandvik M, Nonga HE, Ballot A, Wilkins AL, Rise F, Jaabaek JAH, Loader JI (2016) Conjugation of microcystins with thiols is reversible: base-catalyzed deconjugation for chemical analysis. Chem Res Toxicol 29(5):860–870. doi: 10.1021/acs.chemrestox.6b00028 CrossRefPubMedGoogle Scholar
  26. Moss NA, Bertin MJ, Kleigrewe K, Leao TF, Gerwick L, Gerwick WH (2016) Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery. J Ind Microbiol Biot 43(2–3):313–324. doi: 10.1007/s10295-015-1705-7 CrossRefGoogle Scholar
  27. Narainsamy K, Marteyn B, Sakr S, Cassier-Chauvat C, Chauvat F (2013) Genomics of the pleïotropic glutathione system in cyanobacteria. In: Chauvat F, Cassier-Chauvat C (eds) Genomics of cyanobacteria. Advances in Botanicol research, vol 65. Academic Press, Elsevier, Amsterdam, pp 157–188CrossRefGoogle Scholar
  28. Narainsamy K, Farci S, Braun E, Junot C, Cassier-Chauvat C, Chauvat F (2016) Oxidative-stress detoxification and signalling in cyanobacteria: the crucial glutathione synthesis pathway supports the production of ergothioneine and ophthalmate. Molecular Microbiol 100(1):15–24. doi: 10.1111/mmi.13296 CrossRefGoogle Scholar
  29. Pelroy RA, Kirk MR, Bassham JA (1976) Photosystem II regulation of macromolecule synthesis in the blue-green alga Aphanocapsa 6714. J Bacteriol 128(2):623–632PubMedPubMedCentralGoogle Scholar
  30. Salvador-Reyes LA, Luesch H (2015) Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat Prod Rep 32(3):478–503. doi: 10.1039/c4np00104d CrossRefPubMedPubMedCentralGoogle Scholar
  31. Savakis P, Hellingwerf KJ (2015) Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotech 33:8–14. doi: 10.1016/j.copbio.2014.09.007 CrossRefPubMedGoogle Scholar
  32. Tovey KC, Spiller GH, Oldham KG, Lucas N, Carr NG (1974) A new method for the preparation of uniformly 14C-labelled compounds by using Anacystis nidulans. The Biochemical journal 142(1):47–56CrossRefPubMedPubMedCentralGoogle Scholar
  33. Videau P, Wells KN, Singh AJ, Gerwick WH, Philmus B (2016) Assessment of Anabaena sp. strain PCC 7120 as a heterologous expression host for cyanobacterial natural products: production of lyngbyatoxin a. ACS Synth Biol 5(9):978–988. doi: 10.1021/acssynbio.6b00038 CrossRefPubMedGoogle Scholar
  34. Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19(4):162–173. doi: 10.1016/j.tim.2010.12.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniv Paris-Sud, Université Paris-SaclayGif-sur-Yvette cedexFrance
  2. 2.Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEAUniversité Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations