Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 5, pp 2189–2199 | Cite as

ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production

  • Chunkai Gu
  • Genyu Wang
  • Shuai Mai
  • Pengfei Wu
  • Jianrong Wu
  • Gehua Wang
  • Hongjuan Liu
  • Jianan Zhang
Bioenergy and biofuels

Abstract

Butanol is an ideal renewable biofuel which possesses superior fuel properties. Previously, butanol-producing symbiotic system TSH06 was isolated in our lab, with microoxygen tolerance ability. To boost butanol yield for large-scale industrial production, TSH06 was used as parental strain and subjected to atmospheric and room temperature plasma (ARTP) and four rounds of genome shuffling (GS). ARTP mutant and GS strain were co-cultured with facultative anaerobic Bacillus cereus TSH2 to form a symbiotic system with microoxygen tolerance, which was then subjected to fermentation. Relative messenger RNA (mRNA) level of key enzyme gene was measured by real-time PCR. The highest butanol titer of TS4-30 reached 15.63 g/L, which was 34% higher than TSH06 (12.19 g/L). Compared with parental strain, mRNA of acid-forming gene in TS4-30 decreased in acidogenesis phase, while solvent-forming gene increased in solventogenesis phase. This gene expression pattern was consistent with high butanol yield and low acid level in TS4-30. In summary, symbiotic system TS4-30 was obtained with butanol titer improvement and microoxygen tolerance.

Keywords

Butanol fermentation Symbiotic system TSH06 TS4-30 Genome shuffling Real-time RT-PCR 

Notes

Acknowledgements

Authors’ contributions

GW, GW, SM, and JZ designed the experiments. CG, GW, and SM performed the experiments. CG, GW, and JZ drafted the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

This article does not contain any studies with human participants performed by any of the authors.

Funding

This work was supported by the Foundation of Key Laboratory for Industrial Biocatalysis (Tsinghua University), Ministry of Education (No. 2015302), National Natural Science Foundation of China (No. 21176141), and National Energy Administration (No. 20131448926). We appreciate Prof. Xinhua Xing and his group for their help in ARTP mutation, which is the basis of this article.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abd-Alla MH, Abdel-Wahab EE (2012) Production of acetone-butanol-ethanol from spoilage date palm (Phoenix dactylifera L.) fruits by mixed culture of Clostridium acetobutylicum and Bacillus subtilis. Biomass Bioenergy 42:172–178CrossRefGoogle Scholar
  2. Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9(3):258–267CrossRefPubMedGoogle Scholar
  3. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568CrossRefPubMedGoogle Scholar
  4. Annous BA, Blaschek HP (1991) Isolation and characterization of Clostridium acetobutylicum mutants with enhanced Amylolytic activity. Appl Environ Microbiol 57(9):2544–2548PubMedPubMedCentralGoogle Scholar
  5. Baer SH, Blaschek HP, Smith TL (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol 53:2854–2861PubMedPubMedCentralGoogle Scholar
  6. Chen CK, Blaschek HP (1999) Acetate enhances solvent production and prevents degenerationin Clostridium beijerinckii BA101. Appl Microbiol Biotechnol 52:170–173CrossRefPubMedGoogle Scholar
  7. Ezeji TC, Qureshi N, Blaschek HP (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19(6):596–603CrossRefGoogle Scholar
  8. Fang M, Jin L, Zhang C, Tan Y, Jiang P, Ge N, Li H, Xing X (2013) Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS One 8(10):77046CrossRefGoogle Scholar
  9. Gao XF, Zhao H, Zhang GH, He K, Jin Y (2012) Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone–butanol–ethanol (ABE). Curr Microbiol 65(2):128–132CrossRefPubMedGoogle Scholar
  10. Gérando HM, Fayolle-Guichard F, Rudant L, Millah SK, Monot F, Ferreira NL, López-Contreras AM (2016) Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling. Appl Microbiol Biotechnol 100(12):5427–5436CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gheshlaghi R, Scharer JM, Moo-Young M, Chou CP (2009) Metabolic pathways of clostridia for producing butanol. Biotechnol Adv 27:764–781CrossRefPubMedGoogle Scholar
  12. Gong JX, Zheng HJ, Wu ZJ, Chen T, Zhao XM (2009) Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv 27:996–1005CrossRefPubMedGoogle Scholar
  13. Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142(Pt 8):2079–2086CrossRefPubMedGoogle Scholar
  14. Harris LM, Desai RP, Welker NE, Papoutsakis ET (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 67(1):1–11Google Scholar
  15. Haus S, Jabbari S, Millat T, Janssen H, Fischer RJ, Bahl H, King JR, Wolkenhauer O (2011) A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture. BMC Syst Biol 5:10CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11(4–5):284–291CrossRefPubMedGoogle Scholar
  17. Lee BU, Cho YS, Park SC, Oh KH (2009) Enhanced degradation of TNT by genome-shuffled Stenotrophomonas maltophilia OK-5. Curr Microbiol 59:346–351CrossRefPubMedGoogle Scholar
  18. Lee J, Jang YS, Choi SJ, Im JA, Song H, Cho JH, do Seung Y, Papoutsakis ET, Bennett GN, Lee SY (2012) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl Environ Microbiol 78(5):1416–1423CrossRefPubMedPubMedCentralGoogle Scholar
  19. Li S, Li F, Chen XS, Wang L, Xu J, Tang L, Mao ZG (2012) Genome shuffling enhanced ε-Poly-l-Lysine production by improving glucose tolerance of Streptomyces graminearui. Appl Biochem Biotechnol 166(2):414–423Google Scholar
  20. Li HG, Luo W, Wang Q, Yu XB (2014) Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma. Appl Biochem Biotechnol 172(7):3330–3341CrossRefPubMedGoogle Scholar
  21. Mao SM, Luo YM, Zhang TR, Li JS, Bao GH, Zhu Y, Chen ZG, Zhang YP, Li Y, Ma YH (2010) Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol ntolerance and butanol yield. J Proteome Res 9:3046–3061CrossRefPubMedGoogle Scholar
  22. Nair RV, Green EM, Watson DE, Bennett GN, Papoutsakis ET (1999) Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J Bacteriol 181(1):319–330PubMedPubMedCentralGoogle Scholar
  23. Otte B, Grunwaldt E, Mahmoud O, Jennewein S (2009) Genome shuffling of Clostridium diolis DSM 15410 for improved 1,3-propanediol production. Appl Environ Microbiol 75(24):7610–7616CrossRefPubMedPubMedCentralGoogle Scholar
  24. Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429CrossRefPubMedGoogle Scholar
  25. Peng JL (2005) Global production technology and market analysis of butyl alcohol and 2-ethyl hexanol. Huagong Keji Shichang 4:1–8Google Scholar
  26. Pereira LG, Dias MOS, Mariano AP (2015) Economic and environmental assessment of n-butanol production in an integrated first and second generation sugarcane biorefinery: fermentative versus catalytic routes. Appl Energy 160:120–131CrossRefGoogle Scholar
  27. Shen PZ, Ren C (2005) Demand forecast about the production & market of butyl alcohol and Octyl alcohol. Huagong Jinzhan 24(2):216–220Google Scholar
  28. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69(8):4951–4965CrossRefPubMedPubMedCentralGoogle Scholar
  29. Trana HTM, Cheirsilpa B, Hodgsonb B, Umsakulc K (2010) Potential use of Bacillus subtilis in a co-culture with Clostridium butylicum for acetone–butanol–ethanol production from cassava starch. Biochem Eng J 48:260–267CrossRefGoogle Scholar
  30. Wang G, Wu P, Liu Y, Mi S, Mai S, Gu C, Wang G, Liu H, Zhang J, Børresen BT, Mellemsæther E, Kotlar HK (2015) Isolation and characterization of non-anaerobic butanol-producing symbiotic system TSH06. Appl Microbiol Biotechnol 99(20):8803–8813CrossRefPubMedGoogle Scholar
  31. Wu P, Wang G, Wang G, Børresen BT, Liu H, Zhang J (2016) Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus. Microb Cell Factories 15(1):8CrossRefGoogle Scholar
  32. Zhang YF, Chen J, Yang YL, Jiao RS (1996) Breeding of high-ratio butanol strains of Clostridicum acetobutylicum and application to industrial production. Ind Microbiol 26(4):1–6Google Scholar
  33. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646CrossRefPubMedGoogle Scholar
  34. Zhang G, Lin Y, Qi X, Wang L, He P, Wang Q, Ma Y (2015) Genome shuffling of the nonconventional yeast Pichia anomala for improved sugar alcohol production. Microb Cell Factories 14:112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Chunkai Gu
    • 1
    • 2
  • Genyu Wang
    • 1
  • Shuai Mai
    • 1
  • Pengfei Wu
    • 1
  • Jianrong Wu
    • 2
  • Gehua Wang
    • 1
  • Hongjuan Liu
    • 1
  • Jianan Zhang
    • 1
  1. 1.Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
  2. 2.The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina

Personalised recommendations