Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 3, pp 933–949 | Cite as

Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future

  • He WangEmail author
  • Yunxiang Wang
  • Ruijin Yang
Mini-Review

Abstract

With the increased knowledge on spore structure and advances in biotechnology engineering, the newly developed spore-surface display system confers several inherent advantages over other microbial cell-surface display systems including enhanced stability and high safety. Bacillus subtilis is the most commonly used Bacillus species for spore-surface display. The expression of heterologous antigen or protein on the surface of B. subtilis spores has now been practiced for over a decade with noteworthy success. As an update and supplement to other previous reviews, we comprehensively summarize recent studies in the B. subtilis spore-surface display technique. We focus on its benefits as well as the critical factors affecting its display efficiency and offer suggestions for the future success of this field.

Keywords

Surface display Spore Bacillus subtilis Factor Display efficiency Application 

Notes

Compliance with ethical standards

Funding

This work was supported by the project from the Scientific Research & Development Fund of Jiyang College, Zhejiang Agriculture and Forestry University (JY2014RC009, JYMS1409) and Food Science and Engineering the most important discipline of Zhejiang province (JYTsp20142101).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Akhila DS, Mani MK, Rai P, Condon K, Owens L, Karunasagar I (2014) Antisense RNA mediated protection from white spot syndrome virus (WSSV) infection in Pacific white shrimp Litopenaeus vannamei. Aquaculture 435:306–309CrossRefGoogle Scholar
  2. Amuguni H, Tzipori S (2012) Bacillus subtilis: a temperature resistant and needle free delivery system of immunogens. Hum Vaccin Immunother 8:979–986CrossRefPubMedPubMedCentralGoogle Scholar
  3. Batista MT, Souza RD, Paccez JD, Luiz WB, Ferreira EL, Cavalcante RC, Ferreira RC, Ferreira LC (2014) Gut adhesive Bacillus subtilis spores as a platform for the mucosal delivery of antigens. Infect Immun 82:1414–1423CrossRefGoogle Scholar
  4. Cao Y, Li Z, Yue Y, Song N, Peng L, Wang L, Lu X (2013) Construction and evaluation of a novel Bacillus subtilis spores based enterovirus 71 vaccine. J Appl Biomed 11:105–113CrossRefGoogle Scholar
  5. Chen H, Tian R, Ni Z, Zhang Q, Zhang T, Chen Z, Chen K, Yang S (2015a) Surface display of the thermophilic lipase Tm1350 on the spore of Bacillus subtilis by the CotB anchor protein. Extremophiles 19:799–808CrossRefPubMedGoogle Scholar
  6. Chen H, Zhang T, Jia J, Ake V, Tian R, Ni Z, Chen Z, Chen K, Yang S (2015b) Expression and display of a novel thermostable esterase from Clostridium thermocellum on the surface of Bacillus subtilis using the CotB anchor protein. J Ind Microbiol Biotechnol 42:1439–1448CrossRefPubMedGoogle Scholar
  7. Chen H, Zhang T, Sun T, Ni Z, Le Y, Tian R, Chen Z, Zhang C (2015c) Clostridium thermocellum nitrilase expression and surface display on Bacillus subtilis spores. J Mol Microbiol Biotechnol 25:381–387CrossRefPubMedGoogle Scholar
  8. Chen H, Chen Z, Ni Z, Tian R, Zhang T, Jia J, Chen K, Yang S (2016) Display of Thermotoga maritima MSB8 nitrilase on the spore surface of Bacillus subtilis using out coat protein CotG as the fusion partner. J Mol Catal B Enzym 123:73–80CrossRefGoogle Scholar
  9. Ciabattini A, Parigi R, Isticato R, Oggioni MR, Pozzi G (2004) Oral priming of mice by recombinant spores of Bacillus subtilis. Vaccine 22:4139–4143CrossRefPubMedGoogle Scholar
  10. Colenutt C (2014) Use of Bacillus subtilis spores in treatments for Clostridium difficile infection. Dissertation, University of LondonGoogle Scholar
  11. Crameri A, Whitehorn EA, Tate E, Stemmer WP (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319CrossRefPubMedGoogle Scholar
  12. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220CrossRefPubMedGoogle Scholar
  13. Cutting SM, Vander-Horn PB (1990) Genetic analysis. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. Wiley, Chichester, pp 27–60Google Scholar
  14. Cutting SM, Hong HA, Baccigalupi L, Ricca E (2009) Oral vaccine delivery by recombinant spore probiotics. Int Rev Immunol 28:487–505CrossRefPubMedGoogle Scholar
  15. D’Apice L, Sartorius R, Caivano A, Mascolo D, Del Pozzo G, Di Mase DS, Ricca E, Li Pira G, Manca F, Malanga D, De Palma R, De Berardinis P (2007) Comparative analysis of new innovative vaccine formulations based on the use of procaryotic display systems. Vaccine 25:1993–2000CrossRefPubMedGoogle Scholar
  16. Driks A (1999) Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63:1–20PubMedPubMedCentralGoogle Scholar
  17. Duc LH, Cutting SM (2003a) Bacterial spores as heat stable vaccine vehicles. Expert Opin Biol Ther 3:1263–1270CrossRefGoogle Scholar
  18. Duc LH, Hong HA, Fairweather N, Ricca E, Cutting SM (2003b) Bacterial spores as vaccine vehicles. Infect Immun 71:2810–2818CrossRefPubMedCentralGoogle Scholar
  19. Duc LH, Hong HA, Atkins HS, Flick-Smith HC, Durrani Z, Rijipkema S, Titball RW, Cutting SM (2007) Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine 25:346–355CrossRefGoogle Scholar
  20. Feng F, Hu P, Chen L, Tang Q, Lian C, Yao Q, Chen K (2013) Display of human proinsulin on the Bacillus subtilis spore surface for oral administration. Curr Microbiol 67:1–8CrossRefPubMedGoogle Scholar
  21. Gao C, Xu X, Zhang X, Che B, Ma C, Qiu J, Tao F, Xu P (2011) Chemoenzymatic synthesis of N-acetyl-D-neuraminic acid from N-acetyl-D-glucosamine by using the spore surface-displayed N-acetyl-D-neuraminic acid aldolase. Appl Environ Microbiol 77:7080–7083CrossRefPubMedPubMedCentralGoogle Scholar
  22. Henriques AO, Moran CP Jr (2007) Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol 61:555–588CrossRefPubMedGoogle Scholar
  23. Hinc K, Ghandili S, Karbalaee G, Shali A, Noghabi K, Ricca E, Ahmadian G (2010a) Efficient binding of nickel ions to recombinant Bacillus subtilis spores. Res Microbiol 161:757–764CrossRefPubMedGoogle Scholar
  24. Hinc K, Isticato R, Dembek M, Karczewska J, Iwanicki A, Peszyńska-Sularz G, De Felice M, Obuchowski M, Ricca E (2010b) Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb Cell Factories 9:2CrossRefGoogle Scholar
  25. Hinc K, Iwanicki A, Obuchowski M (2013) New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis. Microb Cell Factories 12:22CrossRefGoogle Scholar
  26. Hinc K, Stasiłojć M, Piątek I, Peszyńska-Sularz G, Isticato R, Ricca E, Obuchowski M, Iwanicki A (2014) Mucosal adjuvant activity of IL-2 presenting spores of Bacillus subtilis in a murine model of Helicobacter pylori vaccination. PLoS One 9:e95187CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hoang TH, Hong HA, Clark GC, Titball RW, Cutting SM (2008) Recombinant Bacillus subtilis expressing the Clostridium perfringens alpha toxoid is a candidate orally delivered vaccine against necrotic enteritis. Infect Immun 76:5257–5265CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hong HA, Duc LH, Cutting SM (2006) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835CrossRefGoogle Scholar
  29. Hong HA, Huang JM, Khaneja R, Hiep LV, Urdaci MC, Cutting SM (2008) The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J Appl Microbiol 105:510–520CrossRefPubMedGoogle Scholar
  30. Hosseini-Abari A, Kim BG, Lee SH, Emtiazi G, Kim W, Kim JH (2016) Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein. J Basic Microbiol 56:1–7CrossRefGoogle Scholar
  31. Huang JM, La Ragione RM, Cooley WA, Todryk S, Cutting SM (2008) Cytoplasmic delivery of antigens, by Bacillus subtilis enhances Th1 responses. Vaccine 26:6043–6052CrossRefPubMedGoogle Scholar
  32. Huang JM, Hong HA, Van Tong H, Hoang TH, Brisson A, Cutting SM (2010) Mucosal delivery of antigens using adsorption to bacterial spores. Vaccine 28:1021–1030CrossRefPubMedGoogle Scholar
  33. Hwang BY, Kim BG, Kim JH (2011) Bacterial surface display of a co-factor containing enzyme, ω-transaminase from Vibrio fluvialis using the Bacillus subtilis spore display system. Biosci Biotechnol Biochem 75:1862–1865CrossRefPubMedGoogle Scholar
  34. Hwang BY, Pan JG, Kim BG, Kim JH (2013) Functional display of active tetrameric β-galactosidase using Bacillus subtilis spore display system. J Nanosci Nanotechnol 13:2313–2319CrossRefPubMedGoogle Scholar
  35. Imamura D, Kuwana R, Takamatsu H, Watabe K (2011) Proteins involved in formation of the outermost layer of Bacillus subtilis spores. J Bacteriol 193:4075–4080CrossRefPubMedPubMedCentralGoogle Scholar
  36. Isticato R, Ricca E (2014) Spore surface display. Microbiol Spect 2:TBS-0011-2012Google Scholar
  37. Isticato R, Cangiano G, Tran HT, Ciabattini A, Medaglini D, Oggioni MR, De Felice M, Del Pozzo G, Ricca E (2001) Surface display of recombinant proteins on Bacillus subtilis spores. J Bacteriol 183:6294–6301CrossRefPubMedPubMedCentralGoogle Scholar
  38. Isticato R, Di Mase DS, Mauriello EM, De Felice M, Ricca E (2007) Amino terminal fusion of heterologous proteins to CotC increases display efficiencies in the Bacillus subtilis spore system. BioTechniques 42:151–156CrossRefPubMedGoogle Scholar
  39. Iwanicki A, Piątek I, Stasiłojć M, Grela A, Łęga T, Obuchowski M, Hinc K (2014) A system of vectors for Bacillus subtilis spore surface display. Microb Cell Factories 13:30CrossRefGoogle Scholar
  40. Jank T, Aktories K (2008) Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol 16:222–229CrossRefPubMedGoogle Scholar
  41. Kim J, Schumann W (2009) Display of proteins on Bacillus subtilis endospores. Cell Mol Life Sci 66:3127–3136CrossRefPubMedGoogle Scholar
  42. Kim JH, Kim BG, Choi SK, Jung HC, Pan JG (2004) Method for expression of proteins on spore surface. US Patent 7, 582,426 B2Google Scholar
  43. Kim JH, Lee CS, Kim BG (2005) Spore-displayed streptavidin: a live diagnostic tool in biotechnology. Biochem Biophy Res Commun 331:210–214CrossRefGoogle Scholar
  44. Kim JH, Roh C, Lee CW, Kyung D, Choi SK, Jung HC, Pan JG, Kim BG (2007) Bacterial surface display of GFPuv on Bacillus subtilis spores. J Microbiol Biotechnol 17:677–680PubMedGoogle Scholar
  45. Knecht LD, Pasini P, Daunert S (2011) Bacterial spores as platforms for bioanalytical and biomedical applications. Anal Bioanal Chem 400:977–989CrossRefPubMedGoogle Scholar
  46. Kunst F, Ogasawara N, Moszer I et al (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256CrossRefPubMedGoogle Scholar
  47. Kwon SJ, Jung HC, Pan JG (2007) Transgalactosylation in a water-solvent biphasic reaction system with β-galactosidase displayed on the surfaces of Bacillus subtilis spores. Appl Environ Microbiol 73:2251–2256CrossRefPubMedGoogle Scholar
  48. Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21:45–52CrossRefPubMedGoogle Scholar
  49. Li L, Hu X, Wu Z, Xiong S, Zhou Z, Wang X, Lu F, Yu X (2009) Immunogenicity of self-adjuvanticity oral vaccine candidate based on use of Bacillus subtilis spore displaying Schistosoma japonicum 26 KDa GST protein. Parasitol Res 105:1643–1651CrossRefPubMedGoogle Scholar
  50. Li Q, Ning D, Wu C (2010) Surface display of GFP using CotX as a molecular vector on Bacillus subtilis spores. Chinese J Biotechnol 26:264–269Google Scholar
  51. Li G, Tang Q, Chen H, Yao Q, Ning D, Chen K (2011) Display of Bombyx mori nucleopolyhedrovirus GP64 on the Bacillus subtilis spore coat. Curr Microbiol 62:1368–1373CrossRefPubMedGoogle Scholar
  52. Lian C, Zhou Y, Feng F, Chen L, Tang Q, Yao Q, Chen K (2014) Surface display of human growth hormone on Bacillus subtilis spores for oral administration. Curr Microbiol 68:463–471CrossRefPubMedGoogle Scholar
  53. Liu Y, Li S, Xu H, Wu L, Xu Z, Liu J, Feng X (2014) Efficient production of D-tagatose using a food-grade surface display system. J Agric Food Chem 62:6756–6762CrossRefPubMedGoogle Scholar
  54. Mao L, Jiang S, Li G, He Y, Chen L, Yao Q, Chen K (2012) Surface display of human serum albumin on Bacillus subtilis spores for oral administration. Curr Microbiol 64:545–551CrossRefPubMedGoogle Scholar
  55. Mauriello EM, Duc LH, Isticato R, Cangiano G, Hong HA, De Felice M, Ricca E, Cutting SM (2004) Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 22:1177–1187CrossRefPubMedGoogle Scholar
  56. Mauriello EM, Cangiano G, Maurano F, Saggese V, De Felice M, Rossi M, Ricca E (2007) Germination-independent induction of cellular immune response by Bacillus subtilis spores displaying the C fragment of the tetanus toxin. Vaccine 25:788–793CrossRefPubMedGoogle Scholar
  57. McKenney PT, Eichenberger P (2012) Dynamics of spore coat morphogenesis in Bacillus subtilis. Mol Microbiol 83:245–260CrossRefPubMedGoogle Scholar
  58. McKenney PT, Driks A, Eichenberger P (2013) The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nature 11:33–44Google Scholar
  59. Medaglini D, Ciabattini A, Spinosa MR, Maggi T, Marcotte H, Oggioni MR, Pozzi G (2001) Immunization with recombinant Streptococcus gordonii expressing tetanus toxin fragment C confers protection from lethal challenge in mice. Vaccine 19:1931–1939CrossRefPubMedGoogle Scholar
  60. Mou C, Zhu L, Xing X, Lin J, Yang Q (2016) Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs. Antivir Res 131:74–84CrossRefPubMedGoogle Scholar
  61. Negri A, Potocki W, Iwanicki A, Obuchowski M, Hinc K (2013) Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. J Med Microbiol 62:1379–1385CrossRefPubMedGoogle Scholar
  62. Nguyen QA, Schumann W (2014) Use of IPTG-inducible promoters for anchoring recombinant proteins on the Bacillus subtilis spore surface. Protein Expr Purif 95:67–76CrossRefPubMedGoogle Scholar
  63. Nguyen VAT, Huynh HA, Hoang TV, Ninh NT, Pham ATH, Nguyen HA, Phan TN, Cutting SM (2013) Killed Bacillus subtilis spores expressing streptavidin: a novel carrier of drugs to target cancer cells. J Drug Target 21:528–541CrossRefPubMedGoogle Scholar
  64. Nguyen ATV, Pham CK, Pham HTT, Pham HL, Nguyen AH, Dang LT, Huynh HA, Cutting SM, Phan TN (2014) Bacillus subtilis spores expressing the VP28 antigen: a potential oral treatment to protect Litopenaeus vannamei against white spot syndrome. FEMS Microbiol Lett 358:202–208CrossRefPubMedGoogle Scholar
  65. Ning D, Leng X, Li Q, Xu W (2011) Surface-displayed VP28 on Bacillus subtilis spores induce protection against white spot syndrome virus in crayfish by oral administration. J Appl Microbiol 111:1327–1336CrossRefPubMedGoogle Scholar
  66. Oggioni MR, Ciabattini A, Cuppone AM, Pozzi G (2003) Bacillus spores for vaccine delivery. Vaccine 21:96–101CrossRefGoogle Scholar
  67. Ozin AJ, Samford CS, Henriques AO, Moran CP Jr (2001) SpoVID guides SafA to the spore coat in Bacillus subtilis. J Bacteriol 183:3041–3049CrossRefPubMedPubMedCentralGoogle Scholar
  68. Pan JG, Kim EJ, Yun CH (2012) Bacillus spore display. Trends Biotechnol 30:610–612CrossRefPubMedGoogle Scholar
  69. Pan JG, Choi SK, Jung HC, Kim EJ (2014) Display of native proteins on Bacillus subtilis spores. FEMS Microbiol Lett 358:209–217CrossRefPubMedGoogle Scholar
  70. Permpoonpattana P, Hong HA, Phetcharaburanin J, Huang JM, Cook J, Fairweather NF, Cutting SM (2011) Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile strains producing toxins A and B. Infect Immun 79:2295–2302CrossRefPubMedPubMedCentralGoogle Scholar
  71. Piggot PJ, Hilbert DW (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7:579–586CrossRefPubMedGoogle Scholar
  72. Potot S, Serra CR, Henriques AO, Schyns G (2010) Display of recombinant proteins on Bacillus subtilis spores, using a coat-associated enzyme as the carrier. Appl Environ Microbiol 76:5926–5933CrossRefPubMedPubMedCentralGoogle Scholar
  73. Qu H, Xu Y, Sun H, Lin J, Yu J, Tang Z, Shen J, Liang C, Li S, Chen W, Li X, Wu Z, Huang Y, Yu X (2014a) Systemic and local mucosal immune responses induced by orally delivered Bacillus subtilis spore expressing leucine aminopeptidase 2 of Clonorchis sinensis. Parasitol Res 113:3095–3103CrossRefPubMedGoogle Scholar
  74. Qu Y, Wang J, Zhang Z, Shi S, Li D, Shen W, Shen E, Zhou J (2014b) Catalytic transformation of HODAs using an efficient meta-cleavage product hydrolase-spore surface display system. J Mol Catal B Enzym 102:204–210CrossRefGoogle Scholar
  75. Richter A, Kim W, Kim JH, Schumann W (2015) Disulfide bonds of proteins displayed on spores of Bacillus subtilis can occur spontaneously. Curr Microbiol 71:156–161CrossRefPubMedGoogle Scholar
  76. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17CrossRefPubMedGoogle Scholar
  77. Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101:514–525CrossRefPubMedGoogle Scholar
  78. Sibley L, Reljic R, Radford DS, Huang JM, Hong HA, Cranenburgh RM, Cutting SM (2014) Recombinant Bacillus subtilis spores expressing MPT64 evaluated as a vaccine against tuberculosis in the murine model. FEMS Microbiol Lett 358:170–179CrossRefPubMedGoogle Scholar
  79. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317CrossRefPubMedGoogle Scholar
  80. Stasiłojć M, Hinc K, Peszyńska-Sularz G, Obuchowski M, Iwanicki A (2015) Recombinant Bacillus subtilis spores elicit Th1/Th17-polarized immune response in a murine model of Helicobacter pylori vaccination. Mol Biotechnol 57:685–691CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tavassoli S, Hinc K, Iwanicki A, Obuchowski M, Ahmadian G (2013) Investigation of spore coat display of Bacillus subtilis β-galactosidase for developing of whole cell biocatalyst. Arch Microbiol 195:197–202CrossRefPubMedGoogle Scholar
  82. Unnikrishnan M, Rappuoli R, Serruto D (2012) Recombinant bacterial vaccines. Curr Opin Immun 24:337–342CrossRefGoogle Scholar
  83. Uyen NQ, Hong HA, Cutting SM (2007) Enhanced immunisation and expression strategies using bacterial spores as heat-stable vaccine delivery vehicles. Vaccine 25:356–365CrossRefPubMedGoogle Scholar
  84. Valdez A, Yepiz-Plascencia G, Ricca E, Olmos J (2014) First Litopenaeus vannamei WSSV 100% oral vaccination protection using CotC::Vp26 fusion protein displayed on Bacillus subtilis spores surface. J Appl Microbiol 117:347–357CrossRefPubMedGoogle Scholar
  85. Wang N, Chang C, Yao Q, Li G, Qin L, Chen L, Chen K (2011) Display of Bombyx mori alcohol dehydrogenases on the Bacillus subtilis spore surface to enhance enzymatic activity under adverse conditions. PLoS One 6:e21454CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wang X, Chen W, Tian Y, Mao Q, Lv X, Shang M, Li X, Yu X, Huang Y (2014) Surface display of Clonorchis sinensis enolase on Bacillus subtilis spores potentializes an oral vaccine candidate. Vaccine 32:1338–1345CrossRefPubMedGoogle Scholar
  87. Wang H, Yang R, Hua X, Zhao W, Zhang W (2015) Functional display of active β-galactosidase on Bacillus subtilis spores using crust proteins as carriers. Food Sci Biotechnol 24:1755–1759CrossRefGoogle Scholar
  88. Wang H, Yang R, Hua X, Zhang W, Zhao W (2016) An approach for lactulose production using the CotX-mediated spore-displayed β-galactosidase as a biocatalyst. J Microbiol Biotechnol 26:1267–1277CrossRefPubMedGoogle Scholar
  89. Wu CH, Mulchandani A, Chen W (2008) Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol 16:181–188CrossRefPubMedGoogle Scholar
  90. Xu X, Gao C, Zhang X, Che B, Ma C, Qiu J, Tao F, Xu P (2011a) Production of N-acetyl-D-neuraminic acid by use of an efficient spore surface display system. Appl Environ Microbiol 77:3197–3201CrossRefPubMedPubMedCentralGoogle Scholar
  91. Xu Z, Qing Y, Li S, Feng X, Xu H, Ouyang P (2011b) A novel L-arabinose isomerase from Lactobacillus fermentum CGMCC2921 for D-tagatose production: gene cloning, purification and characterization. J Mol Catal B Enzym 70:1–7Google Scholar
  92. Yu J, Chen T, Xie Z, Liang P, Qu H, Shang M, Mao Q, Ning D, Tang Z, Shi M, Zhou L, Huang Y, Yu X (2015) Oral delivery of Bacillus subtilis spore expressing enolase of Clonorchis sinensis in rat model: induce systemic and local mucosal immune responses and has no side effect on liver function. Parasitol Res 114:2499–2505CrossRefPubMedGoogle Scholar
  93. Yuan Y, Feng F, Chen L, Yao Q, Chen K (2014) Surface display of Acetobacter pasteurianus AdhA on Bacillus subtilis spores to enhance ethanol tolerance for liquor industrial potential. Eur Food Res Technol 238:285–293CrossRefGoogle Scholar
  94. Zhao G, Miao Y, Guo Y, Qiu H, Sun S, Kou Z, Yu H, Li J, Chen Y, Jiang S, Du L, Zhou Y (2014) Development of a heat-stable and orally delivered recombinant M2e-expressing B. subtilis spore-based influenza vaccine. Hum Vaccin Immunother 10:3649–3658CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zhou Z, Xia H, Hu X, Huang Y, Ma C, Chen X, Hu F, Xu J, Lu F, Wu Z, Yu X (2008a) Immunogenicity of recombinant Bacillus subtilis spores expressing Clonorchis sinensis tegumental protein. Parasitol Res 102:293–297CrossRefPubMedGoogle Scholar
  96. Zhou Z, Xia H, Hu X, Huang Y, Li Y, Li L, Ma C, Chen X, Hu F, Xu J, Lu F, Wu Z, Yu X (2008b) Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine 26:1817–1825CrossRefPubMedGoogle Scholar
  97. Zhou Z, Gong S, Li XM, Yang Y, Guan R, Zhou S, Yao S, Xie Y, Ou Z, Zhao J, Liu Z (2015) Expression of Helicobacter pylori urease B on the surface of Bacillus subtilis spores. J Med Microbiol 64:104–110CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Jiyang CollegeZhejiang Agriculture and Forestry UniversityZhujiChina
  2. 2.School of Food Science and TechnologyJiangnan UniversityWuxiChina

Personalised recommendations