Applied Microbiology and Biotechnology

, Volume 101, Issue 3, pp 905–919 | Cite as

Versatility of hydrocarbon production in cyanobacteria

  • Min Xie
  • Weihua WangEmail author
  • Weiwen Zhang
  • Lei Chen
  • Xuefeng LuEmail author


Cyanobacteria are photosynthetic microorganisms using solar energy, H2O, and CO2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.


Hydrocarbon Ethylene Terpene Alkane Cyanobacteria Metabolic engineering 



This work was supported by the National Science Fund for Distinguished Young Scholars of China (31525002 to X. Lu), the Shandong Taishan Scholarship (X. Lu), the Excellent Youth Award of the Shandong Natural Science Foundation (JQ201306 to X. Lu), the Innovation Leading Talent of Qingdao (15-10-3-15-(31)-zch to X. Lu), SINO-GERMAN Research Project (GZ 877 to X. Lu), and the National Natural Science Foundation of China (31300036 to W. Wang).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Bentley FK, García-Cerdán JG, Chen H-C, Melis A (2013) Paradigm of monoterpene (β-phellandrene) hydrocarbons production via photosynthesis in cyanobacteria. Bioenerg Res 6(3):917–929. doi: 10.1007/s12155-013-9325-4 CrossRefGoogle Scholar
  2. Bentley FK, Melis A (2012) Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol Bioeng 109(1):100–109. doi: 10.1002/bit.23298 CrossRefPubMedGoogle Scholar
  3. Bentley FK, Zurbriggen A, Melis A (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 7(1):71–86. doi: 10.1093/mp/sst134 CrossRefPubMedGoogle Scholar
  4. Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 4:246. doi: 10.3389/fmicb.2013.00246 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bird CW, Lynch JM (1974) Formation of hydrocarbons by microorganisms. Chem Soc Rev 3(3):309–328. doi: 10.1039/Cs9740300309 CrossRefGoogle Scholar
  6. Chaves JE, Kirst H, Melis A (2015) Isoprene production in Synechocystis under alkaline and saline growth conditions. J Appl Phycol 27(3):1089–1097. doi: 10.1007/s10811-014-0395-2 CrossRefGoogle Scholar
  7. Chaves JE, Romero PR, Kirst H, Melis A (2016) Role of isopentenyl-diphosphate isomerase in heterologous cyanobacterial (Synechocystis) isoprene production. Photosynth Res. doi: 10.1007/s11120-016-0293-3 PubMedGoogle Scholar
  8. Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS One 9(1):e85140. doi: 10.1371/journal.pone.0085140 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Davies FK, Jinkerson RE, Posewitz MC (2015) Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth Res 123(3):265–284. doi: 10.1007/s11120-014-9979-6 CrossRefPubMedGoogle Scholar
  10. Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2:21. doi: 10.3389/fbioe.2014.00021 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microb 65(2):523–528Google Scholar
  12. Du W, Liang FY, Duan YK, Tan XM, XF L (2013) Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab Eng 19:17–25. doi: 10.1016/j.ymben.2013.05.001 CrossRefPubMedGoogle Scholar
  13. Ducat DC, Avelar-Rivas JA, Way JC, Silver PA (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microb 78(8):2660–2668. doi: 10.1128/Aem.07901-11 CrossRefGoogle Scholar
  14. Eckert C, Xu W, Xiong W, Lynch S, Ungerer J, Tao L, Gill R, Maness PC, Yu J (2014) Ethylene-forming enzyme and bioethylene production. Biotechnol Biofuels 7(1):33. doi: 10.1186/1754-6834-7-33 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Englund E, Pattanaik B, Ubhayasekera SJK, Stensjo K, Bergquist J, Lindberg P (2014) Production of Squalene in Synechocystis sp PCC 6803. PloS one 9(3) doi: 10.1371/journal.pone.0090270
  16. Fehler SWG, Light RJ (1970) Biosynthesis of hydrocarbons in Anabaena variabilis. Incorporation of [methyl-14C]- and [methyl-2H3] methionine into 7- and 8-methylheptadecanes. Biochemistry 9(2):418–422. doi: 10.1021/Bi00804a032 CrossRefPubMedGoogle Scholar
  17. Formighieri C, Melis A (2014) Regulation of beta-phellandrene synthase gene expression, recombinant protein accumulation, and monoterpene hydrocarbons production in Synechocystis transformants. Planta 240(2):309–324. doi: 10.1007/s00425-014-2080-8 CrossRefPubMedGoogle Scholar
  18. Formighieri C, Melis A (2015) A phycocyanin.phellandrene synthase fusion enhances recombinant protein expression and beta-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria). Metab Eng 32:116–124. doi: 10.1016/j.ymben.2015.09.010 CrossRefPubMedGoogle Scholar
  19. Formighieri C, Melis A (2016) Sustainable heterologous production of terpene hydrocarbons in cyanobacteria. Photosynth Res. doi: 10.1007/s11120-016-0233-2 PubMedGoogle Scholar
  20. Fu WJ, Chi Z, Ma ZC, Zhou HX, Liu GL, Lee CF, Chi ZM (2015) Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Appl Microbiol Biotechnol 99(18):7481–7494. doi: 10.1007/s00253-015-6840-6 CrossRefPubMedGoogle Scholar
  21. Fukuda H, Sakai M, Nagahama K, Fujii T, Matsuoka M, Inoue Y, Ogawa T (1994) Heterologous expression of the Gene for the ethylene-forming enzyme from Pseudomonas Syringae in the cyanobacterium Synechococcus. Biotechnol Lett 16(1):1–6. doi: 10.1007/Bf01022614 CrossRefGoogle Scholar
  22. Gao QQ, Wang WH, Zhao H, XF L (2012a) Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp PCC6803. Biotechnol Biofuels 5:17. doi: 10.1186/1754-6834-5-17 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gao X, Gao F, Liu D, Zhang H, Nie XQ, Yang C (2016a) Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energ Environ Sci 9(4):1400–1411. doi: 10.1039/c5ee03102h CrossRefGoogle Scholar
  24. Gao X, Sun T, Pei G, Chen L, Zhang W (2016b) Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. Appl Microbiol Biotechnol 100(8):3401–3413. doi: 10.1007/s00253-016-7374-2 CrossRefPubMedGoogle Scholar
  25. Gao ZX, Zhao H, Li ZM, Tan XM, XF L (2012b) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energ Environ Sci 5(12):9857–9865. doi: 10.1039/c2ee22675h CrossRefGoogle Scholar
  26. Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, Altmann KH, Karsak M, Zimmer A (2008) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci U S A 105(26):9099–9104. doi: 10.1073/pnas.0803601105 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guerrero F, Carbonell V, Cossu M, Correddu D, Jones PR (2012) Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp PCC 6803. PloS one 7(11) doi: 10.1371/journal.pone.0050470
  28. Halfmann C, Gu L, Gibbons W, Zhou R (2014a) Genetically engineering cyanobacteria to convert CO2, water, and light into the long-chain hydrocarbon farnesene. Appl Microbiol Biotechnol 98(23):9869–9877. doi: 10.1007/s00253-014-6118-4 CrossRefPubMedGoogle Scholar
  29. Halfmann C, Gu L, Zhou R (2014b) Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2 and H2O. Green Chem 16(6):3175–3185. doi: 10.1039/C3GC42591F CrossRefGoogle Scholar
  30. Han J, McCarthy ED, Hoeven WV, Calvin M, Bradley WH (1968) Organic geochemical studies. II. A preliminary report on the distribution of aliphatic hydrocarbons in algae, in bacteria, and in a recent lake sediment. Proc Natl Acad Sci U S A 59(1):29–33CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jindou S, Ito Y, Mito N, Uematsu K, Hosoda A, Tamura H (2014) Engineered platform for bioethylene production by a cyanobacterium expressing a chimeric complex of plant enzymes. ACS Synth Biol 3(7):487–496. doi: 10.1021/sb400197f CrossRefPubMedGoogle Scholar
  32. Kaczmarzyk D, Fulda M (2010) Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 152(3):1598–1610. doi: 10.1104/pp.109.148007 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kageyama H, Waditee-Sirisattha R, Sirisattha S, Tanaka Y, Mahakhant A, Takabe T (2015) Improved alkane production in nitrogen-fixing and halotolerant cyanobacteria via abiotic stresses and genetic manipulation of alkane synthetic genes. Curr Microbiol 71(1):115–120. doi: 10.1007/s00284-015-0833-7 CrossRefPubMedGoogle Scholar
  34. Kamarainen J, Knoop H, Stanford NJ, Guerrero F, Akhtar MK, Aro EM, Steuer R, Jones PR (2012) Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production. J Biotechnol 162(1):67–74. doi: 10.1016/j.jbiotec.2012.07.193 CrossRefPubMedGoogle Scholar
  35. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3(3):185–209CrossRefPubMedGoogle Scholar
  36. Kiyota H, Okuda Y, Ito M, Hirai MY, Ikeuchi M (2014) Engineering of cyanobacteria for the photosynthetic production of limonene from CO2. J Biotechnol 185:1–7. doi: 10.1016/j.jbiotec.2014.05.025 CrossRefPubMedGoogle Scholar
  37. Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13(4):353–363. doi: 10.1016/j.ymben.2011.04.004 CrossRefPubMedGoogle Scholar
  38. Lee S, Poulter CD (2008) Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongatus BP-1. J Bacteriol 190(11):3808–3816. doi: 10.1128/Jb.01939-07 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lee TC, Xiong W, Paddock T, Carrieri D, Chang IF, Chiu HF, Ungerer J, Juo SHH, Maness PC, JP Y (2015) Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp PCC 6803. Metab Eng 30:179–189. doi: 10.1016/j.ymben.2015.06.002 CrossRefPubMedGoogle Scholar
  40. Li N, Chang WC, Warui DM, Booker SJ, Krebs C, Bollinger JM (2012) Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry 51(40):7908–7916. doi: 10.1021/bi300912n CrossRefPubMedGoogle Scholar
  41. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12(1):70–79. doi: 10.1016/j.ymben.2009.10.001 CrossRefPubMedGoogle Scholar
  42. Liu XY, Sheng J, Curtiss R (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108(17):6899–6904. doi: 10.1073/pnas.1103014108 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mansouri S, Bunch AW (1989) Bacterial ethylene synthesis from 2-oxo-4-thiobutyric acid and from methionine. J Gen Microbiol 135:2819–2827. doi: 10.1099/00221287-135-11-2819 PubMedGoogle Scholar
  44. Melis A (2013) Carbon partitioning in photosynthesis. Curr Opin Chem Biol 17(3):453–456. doi: 10.1016/j.cbpa.2013.03.010 CrossRefPubMedGoogle Scholar
  45. Mendez-Perez D, Begemann MB, Pfleger BF (2011) Modular synthase-encoding Gene involved in alpha-olefin biosynthesis in Synechococcus sp strain PCC 7002. Appl Environ Microb 77(12):4264–4267. doi: 10.1128/Aem.00467-11 CrossRefGoogle Scholar
  46. Micallef ML, D’Agostino PM, Al-Sinawi B, Neilan BA, Moffitt MC (2015) Exploring cyanobacterial genomes for natural product biosynthesis pathways. Mar Genom 21:1–12. doi: 10.1016/j.margen.2014.11.009 CrossRefGoogle Scholar
  47. Nagahama K, Ogawa T, Fujii T, Tazaki M, Tanase S, Morino Y, Fukuda H (1991) Purification and properties of an ethylene-forming enzyme from Pseudomonas Syringae pv. Phaseolicola PK2. J Gen Microbiol 137:2281–2286. doi: 10.1099/00221287-137-10-2281 CrossRefPubMedGoogle Scholar
  48. Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci U S A 110(4):1249–1254. doi: 10.1073/pnas.1213024110 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pade N, Erdmann S, Enke H, Dethloff F, Duhring U, Georg J, Wambutt J, Kopka J, Hess WR, Zimmermann R, Kramer D, Hagemann M (2016) Insights into isoprene production using the cyanobacterium Synechocystis sp PCC 6803. Biotechnol Biofuels 9. doi: 10.1186/s13068-016-0503-4
  50. Pattanaik B, Lindberg P (2015) Terpenoids and their biosynthesis in cyanobacteria. Life 5(1):269–293. doi: 10.3390/life5010269 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Peralta-Yahya PP, Zhang FZ, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328. doi: 10.1038/Nature11478 CrossRefPubMedGoogle Scholar
  52. Peramuna A, Morton R, Summers ML (2015) Enhancing alkane production in cyanobacterial lipid droplets: a model platform for industrially relevant compound production. Life 5(2):1111–1126. doi: 10.3390/life5021111 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Peramuna A, Summers ML (2014) Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme Arch Microbiol 196(12):881–890. doi: 10.1007/s00203-014-1027-6
  54. Reinsvold RE, Jinkerson RE, Radakovits R, Posewitz MC, Basu C (2011) The production of the sesquiterpene beta-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. J Plant Physiol 168(8):848–852. doi: 10.1016/j.jplph.2010.11.006 CrossRefPubMedGoogle Scholar
  55. Reppas NB, Ridley CP, Reppas N, Ridley C, Rodley CP (US7794969-B1) Producing hydrocarbons comprises culturing engineered cyanobacterium in culture medium and exposing engineered cyanobacterium to light and carbon dioxide. US7794969-B1; WO2011006137-A2; AU2010246473-A1; WO2011006137-A3; EP2307553-A2; AU2010246473-B2; AU2011204785-A1; CA2766204-A1; CN102597248-A; AU2012200694-A1Google Scholar
  56. Sakai M, Ogawa T, Matsuoka M, Fukuda H (1997) Photosynthetic conversion of carbon dioxide to ethylene by the recombinant cyanobacterium, Synechococcus sp. PCC 7942, which harbors a gene for the ethylene-forming enzyme of Pseudomonas syringae. J Ferment Bioeng 84(5):434–443. doi: 10.1016/S0922-338x(97)82004-1 CrossRefGoogle Scholar
  57. Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562. doi: 10.1126/science.1187936 CrossRefPubMedGoogle Scholar
  58. Sharkey TD, Yeh SS (2001) Isoprene emission from plants. Annu Rev Plant Phys 52:407–436. doi: 10.1146/annurev.arplant.52.1.407 CrossRefGoogle Scholar
  59. Takahama K, Matsuoka M, Nagahama K, Ogawa T (2003) Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. J Biosci Bioeng 95(3):302–305. doi: 10.1016/S1389-1723(03)80034-8 CrossRefPubMedGoogle Scholar
  60. Tan XM, Du W, XF L (2015) Photosynthetic and extracellular production of glucosylglycerol by genetically engineered and gel-encapsulated cyanobacteria. Appl Microbiol Biotechnol 99(5):2147–2154. doi: 10.1007/s00253-014-6273-7 CrossRefPubMedGoogle Scholar
  61. Tan XM, Yao L, Gao QQ, Wang WH, Qi FX, XF L (2011) Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab Eng 13(2):169–176. doi: 10.1016/j.ymben.2011.01.001 CrossRefPubMedGoogle Scholar
  62. Ungerer J, Tao L, Davis M, Ghirardi M, Maness PC, JP Y (2012) Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energ Environ Sci 5(10):8998–9006. doi: 10.1039/C2ee22555g CrossRefGoogle Scholar
  63. Varman AM, Xiao Y, Pakrasi HB, Tang YJ (2013) Metabolic engineering of Synechocystis sp strain PCC 6803 for isobutanol production. Appl Environ Microb 79(3):908–914. doi: 10.1128/Aem.02827-12 CrossRefGoogle Scholar
  64. Wang WH, Liu XF, XF L (2013) Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol Biofuels 6:69. doi: 10.1186/1754-6834-6-69 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Xiong W, Morgan JA, Ungerer J, Wang B, Maness PC, Yu JP (2015) The plasticity of cyanobacterial metabolism supports direct CO2 conversion to ethylene. Nat Plants 1(5) doi: 10.1038/Nplants.2015.53
  66. Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Phys 35:155–189. doi: 10.1146/annurev.pp.35.060184.001103 CrossRefGoogle Scholar
  67. Yao L, Qi FX, Tan XM, Lu XF (2014) Improved production of fatty alcohols in cyanobacteria by metabolic engineering. Biotechnol Biofuels 7 doi: 10.1186/1754-6834-7-94
  68. Yoshino T, Liang Y, Arai D, Maeda Y, Honda T, Muto M, Kakunaka N, Tanaka T (2015) Alkane production by the marine cyanobacterium Synechococcus sp NKBG15041c possessing the alpha-olefin biosynthesis pathway. Appl Microbiol Biot 99(3):1521–1529. doi: 10.1007/s00253-014-6286-2 CrossRefGoogle Scholar
  69. Zavrel T, Knoop H, Steuer R, Jones PR, Cerveny J, Trtiek M (2016) A quantitative evaluation of ethylene production in the recombinant cyanobacterium Synechocystis sp PCC 6803 harboring the ethylene-forming enzyme by membrane inlet mass spectrometry. Bioresource Technol 202:142–151. doi: 10.1016/j.biortech.2015.11.062 CrossRefGoogle Scholar
  70. Zhu T, Xie XM, Li ZM, Tan XM, XF L (2015) Enhancing photosynthetic production of ethylene in genetically engineered Synechocystis sp PCC 6803. Green Chem 17(1):421–434. doi: 10.1039/c4gc01730g CrossRefGoogle Scholar
  71. Zimorski V, Ku C, Martin WF, Gould SB (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48. doi: 10.1016/j.mib.2014.09.008 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory of Synthetic Microbiology, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoPeople’s Republic of China
  3. 3.Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoPeople’s Republic of China
  4. 4.Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoPeople’s Republic of China

Personalised recommendations