Applied Microbiology and Biotechnology

, Volume 101, Issue 9, pp 3743–3758 | Cite as

Biotransformation and reduction of estrogenicity of bisphenol A by the biphenyl-degrading Cupriavidus basilensis

  • Marie-Katherin Zühlke
  • Rabea Schlüter
  • Annett Mikolasch
  • Daniela Zühlke
  • Martin Giersberg
  • Henning Schindler
  • Ann-Kristin Henning
  • Heidi Frenzel
  • Elke Hammer
  • Michael Lalk
  • Uwe T. Bornscheuer
  • Katharina Riedel
  • Gotthard Kunze
  • Frieder Schauer
Applied microbial and cell physiology
  • 338 Downloads

Abstract

The biphenyl-degrading Gram-negative bacterium Cupriavidus basilensis (formerly Ralstonia sp.) SBUG 290 uses various aromatic compounds as carbon and energy sources and has a high capacity to transform bisphenol A (BPA), which is a hormonally active substance structurally related to biphenyl. Biphenyl-grown cells initially hydroxylated BPA and converted it to four additional products by using three different transformation pathways: (a) formation of multiple hydroxylated BPA, (b) ring fission, and (c) transamination followed by acetylation or dimerization. Products of the ring fission pathway were non-toxic and all five products exhibited a significantly reduced estrogenic activity compared to BPA. Cell cultivation with phenol and especially in nutrient broth (NB) resulted in a reduced biotransformation rate and lower product quantities, and NB-grown cells did not produce all five products in detectable amounts. Thus, the question arose whether enzymes of the biphenyl degradation pathway are involved in the transformation of BPA and was addressed by proteomic analyses.

Keywords

Bisphenol A Biotransformation Cupriavidus basilensis Estrogenicity Ring cleavage Proteome 

Supplementary material

253_2016_8061_MOESM1_ESM.pdf (923 kb)
ESM 1(PDF 923 kb)
253_2016_8061_MOESM1_ESM.xlsx (290 kb)
ESM 2(XLSX 290 kb)

References

  1. Arai H, Ohishi T, Chang MY, Kudo T (2000) Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiology-UK 146:1707–1715CrossRefGoogle Scholar
  2. Basile T, Petrella A, Petrella M, Boghetich G, Petruzzelli V, Colasuonno S, Petruzzelli D (2011) Review of endocrine-disrupting-compound removal technologies in water and wastewater treatment plants: an EU perspective. Ind Eng Chem Res 50(14):8389–8401. doi:10.1021/ie101919v CrossRefGoogle Scholar
  3. Becher D, Specht M, Hammer E, Francke W, Schauer F (2000) Cometabolic degradation of dibenzofuran by biphenyl-cultivated Ralstonia sp strain SBUG 290. Appl Environ Microbiol 66(10):4528–4531CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bertanza G, Pedrazzani R, Dal Grande M, Papa M, Zambarda V, Montani C, Steimberg N, Mazzoleni G, Di Lorenzo D (2011) Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure. Water Res 45(8):2473–2484. doi:10.1016/j.watres.2011.01.026 CrossRefPubMedGoogle Scholar
  5. Boukouvala S, Fakis G (2005) Arylamine N-acetyltransferases: what we learn from genes and genomes. Drug Metab Rev 37(3):511–564. doi:10.1080/03602530500251204 CrossRefPubMedGoogle Scholar
  6. Chai W, Handa Y, Suzuki M, Saito M, Kato N, Horiuchi CA (2005) Biodegradation of bisphenol A by fungi. Appl Biochem Biotech 120(3):175–182. doi:10.1385/abab:120:3:175 CrossRefGoogle Scholar
  7. Chang HS, Choo KH, Lee B, Choi SJ (2009) The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. J Hazard Mater 172(1):1–12. doi:10.1016/j.jhazmat.2009.06.135 CrossRefPubMedGoogle Scholar
  8. Cogliano VJ (1998) Assessing the cancer risk from environmental PCBs. Environ Health Perspect 106(6):317–323CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cserháti M, Kriszt B, Szoboszlay S, Tóth A, Szabó I, Táncsics A, Nagy I, Horváth B, Kukolya J (2012) De Novo genome project of Cupriavidus basilensis OR16. J Bacteriol 194(8):2109–2110. doi:10.1128/jb.06752-11 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Deloménie C, Fouix S, Longuemaux S, Brahimi N, Bizet C, Picard B, Denamur E, Dupret JM (2001) Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: evidence for highly selective acetylation of 5-aminosalicylic acid. J Bacteriol 183(11):3417–3427. doi:10.1128/jb.183.11.3417-3427.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  11. EPA (2014) Bisphenol A alternatives in thermal paper—final report. www2epagov/sites/production/files/2014-05/documents/bpa_finalpdfGoogle Scholar
  12. Erler C, Novak J (2010) Bisphenol A exposure: human risk and health policy. J Pediatr Nurs 25(5):400–407. doi:10.1016/j.pedn.2009.05.006 CrossRefPubMedGoogle Scholar
  13. Fischer LJ, Seegal RF, Ganey PE, Pessah IN, Kodavanti PRS (1998) Symposium overview: toxicity of non-coplanar PCBs. Toxicol Sci 41(1):49–61PubMedGoogle Scholar
  14. Fischer J, Kappelmeyer U, Kastner M, Schauer F, Heipieper HJ (2010) The degradation of bisphenol A by the newly isolated bacterium Cupriavidus basilensis JF1 can be enhanced by biostimulation with phenol. Int Biodeterior Biodegrad 64(4):324–330. doi:10.1016/j.ibiod.2010.03.007 CrossRefGoogle Scholar
  15. Gao XQ, Wang HS (2014) Impact of bisphenol A on the cardiovascular system—epidemiological and experimental evidence and molecular mechanisms. Int J Environ Res Public Health 11(8):8399–8413. doi:10.3390/ijerph110808399 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Groff T (2010) Bisphenol A: invisible pollution. Curr Opin Pediatr 22(4):524–529. doi:10.1097/MOP.0b013e32833b03f8 CrossRefPubMedGoogle Scholar
  17. Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9(2):412–424. doi:10.1038/ismej.2014.138 CrossRefPubMedGoogle Scholar
  18. Gültekin I, Ince NH (2007) Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. J Environ Manag 85(4):816–832. doi:10.1016/j.jenvman.2007.07.020 CrossRefGoogle Scholar
  19. Haft DH, Selengut JD, Richter RA, Harkins D, Basu MK, Beck E (2013) TIGRFAMs and genome properties in 2013. Nucleic Acids Res 41(D1):D387–D395. doi:10.1093/nar/gks1234 CrossRefPubMedGoogle Scholar
  20. Hahn V, Mikolasch A, Kuhlisch C, Schauer F (2015) Laccase-mediated multi-step homo- and heteromolecular reactions of ortho-dihydroxylated aromatic compounds and mono- or diaminated substances resulting in C-C, C-O and C-N bonds. J Mol Catal B-Enzym 122:56–63. doi:10.1016/j.molcatb.2015.08.011 CrossRefGoogle Scholar
  21. Herter S, Mikolasch A, Michalik D, Hammer E, Schauer F, Bornscheuer U, Schmidt M (2011) C-N coupling of 3-methylcatechol with primary amines using native and recombinant laccases from Trametes versicolor and Pycnoporus cinnabarinus. Tetrahedron 67(48):9311–9321. doi:10.1016/j.tet.2011.09.123 CrossRefGoogle Scholar
  22. Hutson S (2001) Structure and function of branched chain aminotransferases. Prog Nucleic Acid Re 70:175–206. doi:10.1016/s0079-6603(01)70017-7 CrossRefGoogle Scholar
  23. Ike M, Jin C-S, Fujita M (1995) Isolation and characterization of a novel bisphenol A-degrading bacterium Pseudomonas paucimobilis strain FJ-4. Japanese J Wat Treat Biol 31(3):203–212CrossRefGoogle Scholar
  24. Johnson BF, Stanier RY (1971) Dissimilation of aromatic compounds by Alcaligenes eutrophus. J Bacteriol 107(2):468–475PubMedPubMedCentralGoogle Scholar
  25. Kaddar N, Harthé C, Déchaud H, Mappus E, Pugeat M (2008) Cutaneous penetration of bisphenol A in pig skin. J Toxicol Env Heal A 71(8):471–473. doi:10.1080/15287390801906824 CrossRefGoogle Scholar
  26. Kang JH, Kondo F, Katayama Y (2006) Human exposure to bisphenol A. Toxicology 226(2–3):79–89. doi:10.1016/j.tox.2006.06.009 CrossRefPubMedGoogle Scholar
  27. Keri RA, Ho SM, Hunt PA, Knudsen KE, Soto AM, Prins GS (2007) An evaluation of evidence for the carcinogenic activity of bisphenol A. Reprod Toxicol 24(2):240–252. doi:10.1016/j.reprotox.2007.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kolvenbach B, Schlaich N, Raoui Z, Prell J, Zühlke S, Schäffer A, Guengerich FP, Corvini PFX (2007) Degradation pathway of bisphenol A: does ipso substitution apply to phenols containing a quaternary alpha-carbon structure in the para position? Appl Environ Microbiol 73(15):4776–4784. doi:10.1128/aem.00329-07 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lobos JH, Leib TK, TM S (1992) Biodegradation of bisphenol-A and other bisphenols by a gram-negative aerobic bacterium. Appl Environ Microbiol 58(6):1823–1831PubMedPubMedCentralGoogle Scholar
  30. López-Mondéjar R, Zühlke D, Větrovský T, Becher D, Riedel K, Baldrian P (2016) Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels 9. doi:10.1186/s13068-016-0518-xGoogle Scholar
  31. Mikolasch A, Manda K, Schlüter R, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Jülich W-D, Lindequist U (2012) Comparative analyses of laccase-catalyzed amination reactions for production of novel beta-lactam antibiotics. Biotechnol Appl Bioc 59(4):295–306. doi:10.1002/bab.1026 CrossRefGoogle Scholar
  32. Nadejde C, Neamtu M, Hodoroaba VD, Schneider RJ, Ababei G, Panne U (2016) Hybrid iron-based core-shell magnetic catalysts for fast degradation of bisphenol A in aqueous systems. Chem Eng J 302:587–594. doi:10.1016/j.cej.2016.05.090 CrossRefGoogle Scholar
  33. Ogata Y, Goda S, Toyama T, Sei K, Ike M (2013) The 4-tert-butylphenol-utilizing bacterium Sphingobium fuliginis OMI can degrade bisphenols via phenolic ring hydroxylation and meta-cleavage pathway. Environ Sci Technol 47(2):1017–1023. doi:10.1021/es303726h CrossRefPubMedGoogle Scholar
  34. Ohtsubo Y, Delawary M, Kimbara K, Takagi M, Ohta A, Nagata Y (2001) BphS, a key transcriptional regulator of bph genes involved in polychlorinated biphenyl/biphenyl degradation in Pseudomonas sp KKS102. J Biol Chem 276(39):36146–36154. doi:10.1074/jbc.M100302200 CrossRefPubMedGoogle Scholar
  35. Rogers JA, Metz L, Yong VW (2013) Review: Endocrine disrupting chemicals and immune responses: a focus on bisphenol-A and its potential mechanisms. Mol Immunol 53(4):421–430. doi:10.1016/j.molimm.2012.09.013 CrossRefPubMedGoogle Scholar
  36. Sakai K, Yamanaka H, Moriyoshi K, Ohmoto T, Ohe T (2007) Biodegradation of bisphenol A and related compounds by Sphingomonas sp strain BP-7 isolated from seawater. Biosci Biotech Bioch 71(1):51–57. doi:10.1271/bbb.60351 CrossRefGoogle Scholar
  37. Schlueter R, Röder A, Czekalski N, Gliesche D, Mikolasch A, Schauer F (2014) Novel mechanisms of biotransformation of p-tert-amylphenol by bacteria and fungi with special degradation abilities and simultaneous detoxification of the disinfectant. Appl Microbiol Biotechnol 98:373–384. doi:10.1007/s00253-013-5312-0 CrossRefPubMedGoogle Scholar
  38. Schneider T, Schmid E, de Castro JV Jr, Cardinale M, Eberl L, Grube M, Berg G, Riedel K (2011) Structure and function of the symbiosis partners of the lung lichen (Lobaria pulmonaria L. Hoffm.) analyzed by metaproteomics. Proteomics 11(13):2752–2756. doi:10.1002/pmic.201000679 CrossRefPubMedGoogle Scholar
  39. Seachrist DD, Bonk KW, Ho SM, Prins GS, Soto AM, Keri RA (2016) A review of the carcinogenic potential of bisphenol A. Reprod Toxicol 59:167–182. doi:10.1016/j.reprotox.2015.09.006 CrossRefPubMedGoogle Scholar
  40. Spivack J, Leib TK, Lobos JH (1994) Novel pathway for bacterial metabolism of bisphenol A—rearrangements and stilbene cleavage in bisphenol A metabolism. J Biol Chem 269(10):7323–7329PubMedGoogle Scholar
  41. Steffen-Munsberg F, Vickers C, Kohls H, Land H, Mallin H, Nobili A, Skalden L, van den Bergh T, Joosten HJ, Berglund P, Höhne M, Bornscheuer UT (2015) Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnol Adv 33(5):566–604. doi:10.1016/j.biotechadv.2014.12.012 CrossRefPubMedGoogle Scholar
  42. Stope MB, Becher D, Hammer E, Schauer F (2002) Cometabolic ring fission of dibenzofuran by gram-negative and gram-positive biphenyl-utilizing bacteria. Appl Microbiol Biotechnol 59(1):62–67. doi:10.1007/s00253-0002-0979-7 CrossRefPubMedGoogle Scholar
  43. Suzuki H, Ohnishi Y, Horinouchi S (2007) Arylamine N-acetyltransferase responsible for acetylation of 2-aminophenols in Streptomyces griseus. J Bacteriol 189(5):2155–2159. doi:10.1128/jb.01708-06 CrossRefPubMedGoogle Scholar
  44. Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289. doi:10.1099/ijs.0.63247-0 CrossRefPubMedGoogle Scholar
  45. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177. doi:10.1016/j.reprotox.2007.07.010 CrossRefPubMedGoogle Scholar
  46. Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44(D1):D447–D456. doi:10.1093/nar/gkv1145 CrossRefPubMedGoogle Scholar
  47. Wesche J, Hammer E, Becher D, Burchhardt G, Schauer F (2005) The bphC gene-encoded 2,3-dihydroxybiphenyl-1,2-dioxygenase is involved in complete degradation of dibenzofuran by the biphenyl-degrading bacterium Ralstonia sp. SBUG 290. J Appl Microbiol 98(3):635–645. doi:10.1111/j.1365-2672.2004.02489.x CrossRefPubMedGoogle Scholar
  48. Wiacek C, Müller S, Benndorf D (2006) A cytomic approach reveals population heterogeneity of Cupriavidus necator in response to harmful phenol concentrations. Proteomics 6(22):5983–5994. doi:10.1002/pmic.200600244 CrossRefPubMedGoogle Scholar
  49. Zhang C, Zeng G, Yuan L, Yu J, Li J, Huang G, Xi B, Liu H (2007) Aerobic degradation of bisphenol A by Achromobacter xylosoxidans strain B-16 isolated from compost leachate of municipal solid waste. Chemosphere 68(1):181–190. doi:10.1016/j.chemosphere.2006.12.012 CrossRefPubMedGoogle Scholar
  50. Zhang W, Yin K, Chen L (2013) Bacteria-mediated bisphenol A degradation. Appl Microbiol Biotechnol 97(13):5681–5689. doi:10.1007/s00253-013-4949-z CrossRefPubMedGoogle Scholar
  51. Zühlke M-K, Schlüter R, Henning A-K, Lipka M, Mikolasch A, Schumann P, Giersberg M, Kunze G, Schauer F (2016) A novel mechanism of conjugate formation of bisphenol A and its analogues by Bacillus amyloliquefaciens: detoxification and reduction of estrogenicity of bisphenols. Int Biodeterior Biodegrad 109:165–173. doi:10.1016/j.ibiod.2016.01.019 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Marie-Katherin Zühlke
    • 1
  • Rabea Schlüter
    • 1
  • Annett Mikolasch
    • 1
  • Daniela Zühlke
    • 1
  • Martin Giersberg
    • 2
  • Henning Schindler
    • 1
  • Ann-Kristin Henning
    • 1
  • Heidi Frenzel
    • 1
  • Elke Hammer
    • 1
  • Michael Lalk
    • 3
  • Uwe T. Bornscheuer
    • 3
  • Katharina Riedel
    • 1
  • Gotthard Kunze
    • 2
  • Frieder Schauer
    • 1
  1. 1.Institute of MicrobiologyErnst-Moritz-Arndt-University of GreifswaldGreifswaldGermany
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant ResearchSeelandGermany
  3. 3.Institute of BiochemistryErnst-Moritz-Arndt-University of GreifswaldGreifswaldGermany

Personalised recommendations