Applied Microbiology and Biotechnology

, Volume 101, Issue 7, pp 2853–2864 | Cite as

Recombinant expression and characterization of a l-amino acid oxidase from the fungus Rhizoctonia solani

  • Katharina Hahn
  • Katrin Neumeister
  • Andreas Mix
  • Tilman Kottke
  • Harald Gröger
  • Gabriele Fischer von Mollard
Biotechnologically relevant enzymes and proteins


l-Amino acid oxidases (L-AAOs) catalyze the oxidative deamination of l-amino acids to the corresponding α-keto acids, ammonia, and hydrogen peroxide. l-AAOs are homodimeric enzymes with FAD as a non-covalently bound cofactor. They are of potential interest for biotechnological applications. However, heterologous expression has not succeeded in producing large quantities of active recombinant l-AAOs with a broad substrate spectrum so far. Here, we report the heterologous expression of an active l-AAO from the fungus Rhizoctonia solani in Escherichia coli as a fusion protein with maltose-binding protein (MBP) as a solubility tag. After purification, it was possible to remove the MBP-tag proteolytically without influencing the enzyme activity. MBP-rsLAAO1 and 9His-rsLAAO1 converted basic and large hydrophobic l-amino acids as well as methyl esters of these l-amino acids. The progress of the conversion of l-phenylalanine and l-leucine into the corresponding α-keto acids was determined by HPLC and 1H-NMR analysis of reaction mixtures, respectively. Enzymatic activity was stimulated 50–100-fold by SDS treatment. K m values ranging from 0.9–10 mM and v max values from 3 to 10 U mg−1 were determined after SDS activation of 9His-rsLAAO1 for the best substrates. The enzyme displayed a broad pH optimum between pH 7.0 and 9.5. In summary, a successful overexpression of recombinant l-AAO in E. coli was established that results in a promising enzymatic activity and a broad substrate spectrum for biotechnological application.


l-Amino acid oxidase Heterologous expression E. coli Maltose-binding protein Solubility tag 



We thank Denise Weinberg and Thomas Geisler for excellent technical assistance.

Compliance with ethical standards


This study was funded by Deutsche Forschungsgemeinschaft (grant number KO3580/4-1).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Bender AE, Krebs HA (1950) The oxidation of various synthetic alpha-amino-acids by mammalian D-amino-acid oxidase, L-amino-acid oxidase of cobra venom and the L-amino-acid and D-amino-acid oxidases of Neurospora-crassa. Biochem J 46:210–219CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bifulco D, Pollegioni L, Tessaro D, Servi S, Molla G (2013) A thermostable L-aspartate oxidase: a new tool for biotechnological applications. Appl Microbiol Biotechnol 97:7285–7295. doi: 10.1007/s00253-013-4688-1 CrossRefPubMedGoogle Scholar
  3. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1006/abio.1976.9999 CrossRefPubMedGoogle Scholar
  4. Cheng CH, Yang CA, Liu SY, Lo CT, Huang HC, Liao FC, Peng KC (2011) Cloning of a novel L-amino acid oxidase from Trichoderma harzianum ETS 323 and bioactivity analysis of overexpressed L-amino acid oxidase. J Agric Food Chem 59:9142–9149. doi: 10.1021/jf201598z CrossRefPubMedGoogle Scholar
  5. Cubeta MA, Thomas E, Dean RA, Jabaji S, Neate SM, Tavantzis S, Toda T, Vilgalys R, Bharathan N, Fedorova-Abrams N, Pakala SB, Pakala SM, Zafar N, Joardar V, Losada L, Nierman WC (2014) Draft genome sequence of the plant-pathogenic soil fungus Rhizoctonia solani anastomosis group 3 strain Rhs1AP. Genome announcements 2. doi: 10.1128/genomeA.01072-14
  6. Espin JC, Wichers HJ (1999) Activation of a latent mushroom (Agaricus bisporus) tyrosinase isoform by sodium dodecyl sulfate (SDS). Kinetic properties of the SDS-activated isoform. J Agric Food Chem 47:3518–3525. doi: 10.1021/jf981275p CrossRefPubMedGoogle Scholar
  7. Faust A, Niefind K, Hummel W, Schomburg D (2007) The structure of a bacterial (L)-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation. J Mol Biol 367:234–248. doi: 10.1016/j.jmb.2006.11.071 CrossRefPubMedGoogle Scholar
  8. Ferrer M, Chernikova TN, Timmis KN, Golyshin PN (2004) Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain. Appl Environ Microbiol 70:4499–4504. doi: 10.1128/aem.70.8.4499-4504.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martinez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Gorecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kuees U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Duenas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, John FS, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719. doi: 10.1126/science.1221748 CrossRefPubMedGoogle Scholar
  10. Geueke B, Hummel W (2002) A new bacterial L-amino acid oxidase with a broad substrate specificity: purification and characterization. Enzym Microb Technol 31:77–87. doi: 10.1016/s0141-0229(02)00072-8 CrossRefGoogle Scholar
  11. Geueke B, Hummel W (2003) Heterologous expression of Rhodococcus opacus L-amino acid oxidase in Streptomyces lividans. Protein Expr Purif 28:303–309. doi: 10.1016/s1046-5928(02)00701-5 CrossRefPubMedGoogle Scholar
  12. Hanson RL, Bembenek KS, Patel RN, Szarka LJ (1992) Transformation of N-epsilon-CBZ-L-lysine to CBZ-L-oxylysine using L-amino-acid oxidase from Providencia-alcalifaciens and L-2-hydroxy-isocaproate dehydrogenase from Lactobacillus-confusus. Appl Microbiol Biotechnol 37:599–603CrossRefPubMedGoogle Scholar
  13. Hossain GS, Li J, Shin H-d, Du G, Liu L, Chen J (2014) L-Amino acid oxidases from microbial sources: types, properties, functions, and applications. Appl Microbiol Biotechnol 98:1507–1515. doi: 10.1007/s00253-013-5444-2 CrossRefPubMedGoogle Scholar
  14. Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kasai K, Hashiguchi K, Takahashi H, Kasai A, Takeda S, Nakano M, Ishikawa T, Nakamura T, Miura T (2015) Recombinant production and evaluation of an antibacterial l-amino acid oxidase derived from flounder Platichthys stellatus. Appl Microbiol Biotechnol 99:6693–6703. doi: 10.1007/s00253-015-6428-1 CrossRefPubMedGoogle Scholar
  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  17. Liu L, Hossain GS, Shin HD, Li JH, GC D, Chen J (2013) One-step production of alpha-ketoglutaric acid from glutamic acid with an engineered L-amino acid deaminase from Proteus mirabilis. J Biotechnol 164:97–104. doi: 10.1016/j.jbiotec.2013.01.005 CrossRefPubMedGoogle Scholar
  18. Moore BM, Flurkey WH (1990) Sodium dodecyl-sulfate activation of a plant polyphenoloxidase - effect of sodium dodecyl-sulfate on enzymatic and physical characteristics of purified broad bean polyphenoloxidase. J Biol Chem 265:4982–4988PubMedGoogle Scholar
  19. Moustafa IM, Foster S, Lyubimov AY, Vrielink A (2006) Crystal structure of LAAO from Calloselasma rhodostoma with an L-phenylalanine substrate: insights into structure and mechanism. J Mol Biol 364:991–1002. doi: 10.1016/j.jmb.2006.09.032 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35. doi: 10.1016/s0968-0004(98)01336-x CrossRefPubMedGoogle Scholar
  21. Nuutinen JT, Marttinen E, Soliymani R, Hilden K, Timonen S (2012) L-Amino acid oxidase of the fungus Hebeloma cylindrosporum displays substrate preference towards glutamate. Microbiology 158:272–283. doi: 10.1099/mic.0.054486-0 CrossRefPubMedGoogle Scholar
  22. Nuutinen JT, Timonen S (2008) Identification of nitrogen mineralization enzymes, L-amino acid oxidases, from the ectomycorrhizal fungi Hebeloma spp. and Laccaria bicolor. Mycol Res 112:1453–1464. doi: 10.1016/j.mycres.2008.06.023 CrossRefPubMedGoogle Scholar
  23. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 8:785–786. doi: 10.1038/nmeth.1701 CrossRefGoogle Scholar
  24. Pollegioni L, Molla G (2011) New biotech applications from evolved D-amino acid oxidases. Trends Biotechnol 29:276–283. doi: 10.1016/j.tibtech.2011.01.010 CrossRefPubMedGoogle Scholar
  25. Pollegioni L, Motta P, Molla G (2013) L-Amino acid oxidase as biocatalyst: a dream too far ? Appl Microbiol Biotechnol 97:9323–9341CrossRefPubMedGoogle Scholar
  26. Tan NH, Saifuddin MN (1991) Substrate-specificity of king cobra (Ophiophagus-hannah) venom L-amino-acid oxidase. Int J Biochem 23:323–327CrossRefPubMedGoogle Scholar
  27. Tang JD, Perkins AD, Sonstegard TS, Schroeder SG, Burgess SC, Diehl SV (2012) Short-read sequencing for genomic analysis of the brown rot fungus Fibroporia radiculosa. Appl Environ Microbiol 78:2272–2281. doi: 10.1128/aem.06745-11 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Tashiro Y, Rodriguez GM, Atsumi S (2015) 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals. J Ind Microbiol Biotechnol 42:361–373. doi: 10.1007/s10295-014-1547-8 CrossRefPubMedGoogle Scholar
  29. Thayer PS, Horowitz NH (1951) The L-amino acid oxidase of Neurospora. J Biol Chem 192:755–767PubMedGoogle Scholar
  30. Tong HC, Chen W, Shi WY, Qi FX, Dong XZ (2008) SO-LAAO, a novel L-amino acid oxidase that enables Streptococcus oligofermentans to outcompete Streptococcus mutans by generating H2O2 from peptone. J Bacteriol 190:4716–4721. doi: 10.1128/jb.00363-08 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ullah A, Souza TACB, Abrego JRB, Betzel C, Murakami MT, Arni RK (2012) Structural insights into selectivity and cofactor binding in snake venom L-amino acid oxidases. Biochem Biophys Res Com 421:124–128. doi: 10.1016/j.bbrc.2012.03.129 CrossRefPubMedGoogle Scholar
  32. Vanboven A, Tan PST, Konings WN (1988) Purification and characterization of a dipeptidase from Streptococcus-cremoris Wg2. Appl Environ Microbiol 54:43–49Google Scholar
  33. Whitby LG (1953) A new method for preparing flavin-adenine dinucleotide. Biochem J 54(3):437–442CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wittenberg C, Triplett EL (1985) A detergent-activated tyrosinase from Xenopus-laevis .2. Detergent activation and binding. J Biol Chem 260:2542–2546Google Scholar
  35. Zhang HM, Teng M, Niu LW, Wang YB, Wang YZ, Liu Q, Huang QQ, Hao Q, Dong YH, Liu P (2004) Purification, partial characterization, crystallization and structural determination of AHP-LAAO, a novel L-amino-acid oxidase with cell apoptosis-inducing activity from Agkistrodon halys pallas venom. Acta Crystallog Sect D 60:974–977. doi: 10.1107/s0907444904000046 CrossRefGoogle Scholar
  36. Zhou MJ, Diwu ZJ, PanchukVoloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168. doi: 10.1006/abio.1997.2391 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Katharina Hahn
    • 1
  • Katrin Neumeister
    • 1
  • Andreas Mix
    • 2
  • Tilman Kottke
    • 3
  • Harald Gröger
    • 4
  • Gabriele Fischer von Mollard
    • 1
  1. 1.Biochemie III, Fakultät für ChemieUniversität BielefeldBielefeldGermany
  2. 2.Anorganische Chemie und Strukturchemie, Fakultät für ChemieUniversität BielefeldBielefeldGermany
  3. 3.Physikalische und Biophysikalische Chemie, Fakultät für ChemieUniversität BielefeldBielefeldGermany
  4. 4.Organische Chemie I, Fakultät für ChemieUniversität BielefeldBielefeldGermany

Personalised recommendations