Applied Microbiology and Biotechnology

, Volume 101, Issue 8, pp 3427–3438 | Cite as

Hydrophobic features of EPS extracted from anaerobic granular sludge: an investigation based on DAX-8 resin fractionation and size exclusion chromatography

  • Feishu Cao
  • Isabelle Bourven
  • Piet N.L. Lens
  • Eric D. van Hullebusch
  • Yoan Pechaud
  • Gilles Guibaud
Environmental biotechnology


The hydrophobic fractionation of extracellular polymeric substances (EPS) extracted from anaerobic granular sludge was performed on the DAX-8 resin (two elution pH conditions, i.e., pH 2 and pH 5 were tested). The impact of seven different EPS extraction methods on EPS hydrophobicity features was assessed. The results showed that the extraction methods and bulk solution pH influenced dramatically the biochemical composition of the EPS, and in turn, the hydrophobicity determined. Besides, EPS extracting reagents i.e., formaldehyde, ethanol, sodium dodecyl sulfate (SDS), and Tween 20 not only introduced extra carbon content in the total organic carbon (TOC) measurement but also interacted with the DAX-8 resin. By comparing the apparent molecular weight (aMW) distribution of untreated and pH-adjusted EPS samples, more complete EPS aMW information was preserved at pH 5. Thus, elution at pH 5 was preferred in this study for the qualitative analysis of EPS hydrophobic features. The hydrophobic fraction of EPS retained by the resin at pH 5 was ascribed to a wide aMW range, ranging from >440 to 0.3 kDa. Within this range, EPS molecules ranging from 175 to 31 kDa were mostly retained by the DAX-8 resin, which indicates that these EPS molecules are highly hydrophobic.


Anaerobic granular sludge EPS extraction DAX-8 resin Hydrophobicity SEC/absorbance 210 nm 



The authors thank the EU for providing financial support through the Erasmus Mundus Joint Doctorate Program ETeCoS3 (Environmental Technologies for Contaminated Solids, Soils and Sediments, grant agreement FPA no. 2010-0009). The authors also thank the Regional Council of Limousin for its financial support, Madam Isabelle Deveaux from the Smurfit Kappa Company (Saillat-sur-Vienne, France) for providing the anaerobic granular sludge, and Dr. Jérôme Labanowski (Université de Poitiers, France) for giving suggestions on the XAD techniques.

Compliance with ethical standards

The authors declare that the research does not contain any studies with human participants or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2016_8053_MOESM1_ESM.pdf (1.7 mb)
ESM 1 (PDF 1757 kb)


  1. Adav SS, Lee DJ (2008) Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. J Hazard Mater 154:1120–1126. doi: 10.1016/j.jhazmat.2007.11.058 CrossRefPubMedGoogle Scholar
  2. Aiken GR, McKnight DM, Wershaw RL, Mac Carthy P (1985) Humic substances in soil, sediment, and water: geochemistry, isolation, and characterization. Wiley, New YorkGoogle Scholar
  3. Behrens C, Hartmann K, Sunderhaus S, Braun HP, Eubel H (2013) Approximate calculation and experimental derivation of native isoelectric points of membrane protein complexes of Arabidopsis chloroplasts and mitochondria. Biochim Biophys Acta BBA—Biomembr 1828:1036–1046. doi: 10.1016/j.bbamem.2012.11.028
  4. Bhatia D, Bourven I, Simon S, Bordas F, van Hullebusch ED, Rossano S, Lens PNL, Guibaud G (2013) Fluorescence detection to determine proteins and humic-like substances fingerprints of exopolymeric substances (EPS) from biological sludges performed by size exclusion chromatography (SEC). Bioresour Technol 131:159–165. doi: 10.1016/j.biortech.2012.12.078 CrossRefPubMedGoogle Scholar
  5. Bolto B, Abbt-Braun G, Dixon D, Eldridge R, Frimmel F, Hesse S, King S, Toifl M (1999) Experimental evaluation of cationic polyelectrolytes for removing natural organic matter from water. Water Sci Technol 40:71–79. doi: 10.1016/S0273-1223(99)00642-3 CrossRefGoogle Scholar
  6. Bourven I, Simon S, Guibaud G (2013) Influence of the method used to extract EPS from wastewater sludges on their fingerprints obtained by size exclusion chromatography. Environ Technol 34:321–332CrossRefPubMedGoogle Scholar
  7. Bourven I, Bachellerie G, Costa G, Guibaud G (2015a) Evidence of glycoproteins and sulphated proteoglycan-like presence in extracellular polymeric substance from anaerobic granular sludge. Environ Technol 36:2428–2435. doi: 10.1080/09593330.2015.1034186 CrossRefPubMedGoogle Scholar
  8. Bourven I, Simon S, Bhatia D, van Hullebusch ED, Guibaud G (2015b) Effect of various size exclusion chromatography (SEC) columns on the fingerprints of extracellular polymeric substances (EPS) extracted from biological sludge. J Taiwan Inst Chem Eng 49:148–155. doi: 10.1016/j.jtice.2014.11.025 CrossRefGoogle Scholar
  9. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411. doi: 10.1111/j.1472-4669.2007.00117.x CrossRefGoogle Scholar
  10. Brown W, Iverson B, Anslyn E, Foote C (2013) Organic chemistry. Cengage Learning, BelmontGoogle Scholar
  11. Chang YT, Loew GH (1994) Reaction mechanisms of formaldehyde with endocyclicimino groups of nucleic acid bases. J Am ChemSoc 116:3548–3555. doi: 10.1021/ja00087a048 CrossRefGoogle Scholar
  12. Comte S, Guibaud G, Baudu M (2007) Effect of extraction method on EPS from activated sludge: an HPSEC investigation. J Hazard Mater 140:129–137. doi: 10.1016/j.jhazmat.2006.06.058 CrossRefPubMedGoogle Scholar
  13. Comte S, Guibaud G, Baudu M (2006a) Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and complexation properties of Pb and Cd with EPS: part II. Consequences of EPS extraction methods on Pb2+ and Cd2+ complexation. Enzyme MicrobTechnol 38:246–252. doi: 10.1016/j.enzmictec.2005.06.023 CrossRefGoogle Scholar
  14. Comte S, Guibaud G, Baudu M (2006b) Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties: part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme MicrobTechnol 38:237–245. doi: 10.1016/j.enzmictec.2005.06.016 CrossRefGoogle Scholar
  15. d’Abzac P, Bordas F, van Hullebusch ED, Lens PNL, Guibaud G (2010) Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols. Appl Microbiol Biotechnol 85:1589–1599. doi: 10.1007/s00253-009-2288-x CrossRefPubMedGoogle Scholar
  16. d’Abzac P, Bordas F, Joussein E, van Hullebusch ED, Lens PNL, Guibaud G (2013) Metal binding properties of extracellular polymeric substances extracted from anaerobic granular sludges. Environ Sci Pollut Res 20:4509–4519. doi: 10.1007/s11356-012-1401-3 CrossRefGoogle Scholar
  17. Ding Y, Tian Y, Li Z, Zuo W, Zhang J (2015) A comprehensive study into fouling properties of extracellular polymeric substance (EPS) extracted from bulk sludge and cake sludge in a mesophilic anaerobic membrane bioreactor. BioresourTechnol 192:105–114. doi: 10.1016/j.biortech.2015.05.067 CrossRefGoogle Scholar
  18. Domínguez L, Rodríguez M, Prats D (2010) Effect of different extraction methods on bound EPS from MBR sludges: part II. Influence of extraction methods over molecular weight distribution. Desalination 262:106–109. doi: 10.1016/j.desal.2010.06.001 CrossRefGoogle Scholar
  19. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi: 10.1021/ac60111a017 CrossRefGoogle Scholar
  20. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575. doi: 10.1038/nrmicro.2016.94 CrossRefPubMedGoogle Scholar
  21. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. doi: 10.1038/nrmicro2415 PubMedGoogle Scholar
  22. Fletcher M, Loeb GI (1979) Influence of substratum characteristics on the attachment of a marine Pseudomonad to solid surfaces. Appl Environ Microbiol 37:67–72PubMedPubMedCentralGoogle Scholar
  23. Forster CF, Clarke AR (1983) The production of polymer from activated sludge by ethanolic extraction and its relation to treatment plant operation. Water Pollut Control 82:430–433Google Scholar
  24. Gao B, Zhu X, Xu C, Yue Q, Li W, Wei J (2008) Influence of extracellular polymeric substances on microbial activity and cell hydrophobicity in biofilms. J Chem Technol Biotechnol 83:227–232. doi: 10.1002/jctb.1792 CrossRefGoogle Scholar
  25. Giehm L, Oliveira CLP, Christiansen G, Pedersen JS, Otzen DE (2010) SDS-induced fibrillation of α-synuclein: an alternative fibrillation pathway. J Mol Biol 401:115–133. doi: 10.1016/j.jmb.2010.05.060 CrossRefPubMedGoogle Scholar
  26. Guibaud G, Tixier N, Bouju A, Baudu M (2003) Relation between extracellular polymers’ composition and its ability to complex Cd, Cu and Pb. Chemosphere 52:1701–1710. doi: 10.1016/S0045-6535(03)00355-2 CrossRefPubMedGoogle Scholar
  27. Guo F, Zhang SH, Yu X, Wei B (2011) Variation of both bacterial community and extracellular polymers: the inducements of increase of cell hydrophobicity from biofoc to aerobic granule sludge. Bioresour Technol 102:6421–6428. doi: 10.1016/j.biortech.2011.03.046 CrossRefPubMedGoogle Scholar
  28. Harden VP, Harris JO (1953) The isoelectric point of bacterial cells. J Bacteriol 65:198–202PubMedPubMedCentralGoogle Scholar
  29. Johnson M (2013) Detergents: Triton X-100, Tween-20, and more. Mater Methods 3:163. doi: 10.13070/mm.en.3.163 Google Scholar
  30. Jorand F, Boué-Bigne F, Block JC, Urbain V (1998) Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances. Water Sci Technol 37:307–315. doi: 10.1016/S0273-1223(98)00123-1 CrossRefGoogle Scholar
  31. Leloup M, Nicolau R, Pallier V, Yéprémian C, Feuillade-Cathalifaud G (2013) Organic matter produced by algae and cyanobacteria: quantitative and qualitative characterization. J Environ Sci 25:1089–1097. doi: 10.1016/S1001-0742(12)60208-3 CrossRefGoogle Scholar
  32. Lin H, Zhang M, Wang F, Meng F, Liao BQ, Hong H, Chen J, Gao W (2014) A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies. J Membr Sci 460:110–125. doi: 10.1016/j.memsci.2014.02.034 CrossRefGoogle Scholar
  33. Lindahl M, Faris A, Wadström T, Hjertén S (1981) A new test based on “salting out” to measure relative surface hydrophobicity of bacterial cells. Biochim Biophys Acta 677:471–476CrossRefPubMedGoogle Scholar
  34. Liu H, Fang HHP (2002) Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol 95:249–256. doi: 10.1016/S0168-1656(02)00025-1 CrossRefPubMedGoogle Scholar
  35. Liu Y, Yang SF, Li Y, Xu H, Qin L, Tay JH (2004) The influence of cell and substratum surface hydrophobicities on microbial attachment. J Biotechnol 110:251–256. doi: 10.1016/j.jbiotec.2004.02.012 CrossRefPubMedGoogle Scholar
  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  37. Lucarini AC, Kilikian BV (1999) Comparative study of Lowry and Bradford methods: interfering substances. Biotechnol Tech 13:149–154. doi: 10.1023/A:1008995609027 CrossRefGoogle Scholar
  38. Malcolm RL (1991) Factors to be considered in the isolation and characterization of aquatic humic substances. In: Allard PB, Borén DH, Grimvall PA (eds) Humic substances in the aquatic and terrestrial environment. Springer, Berlin Heidelberg, pp. 7–36CrossRefGoogle Scholar
  39. Marhaba TF, Pu Y, Bengraine K (2003) Modified dissolved organic matter fractionation technique for natural water. J Hazard Mater 101:43–53. doi: 10.1016/S0304-3894(03)00133-X CrossRefPubMedGoogle Scholar
  40. Moran AP (2009) Microbial glycobiology: structures, relevance and applications. Elsevier, OxfordGoogle Scholar
  41. Nielsen PH, Frølund B, Keiding K (1996) Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage. Appl Microbiol Biotechnol 44:823–830. doi: 10.1007/BF00178625 CrossRefPubMedGoogle Scholar
  42. Otzen D (2011) Protein–surfactant interactions: a tale of many states. Biochim Biophys Acta BBA—Proteins Proteomics 1814:562–591. doi: 10.1016/j.bbapap.2011.03.003 CrossRefPubMedGoogle Scholar
  43. Pen Y, Zhang ZJ, Morales-García AL, Mears M, Tarmey DS, Edyvean RG, Banwart SA, Geoghegan M (2015) Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus. Biochim Biophys Acta BBA—Biomembr 1848:518–526. doi: 10.1016/j.bbamem.2014.11.007 CrossRefGoogle Scholar
  44. Petsko GA, Ringe D (2008) Protein structure and function. Oxford university Press, Sunderland, MAGoogle Scholar
  45. Peuravuori J, Lehtonen T, Pihlaja K (2002) Sorption of aquatic humic matter by DAX-8 and XAD-8 resins: comparative study using pyrolysis gas chromatography. Anal Chim Acta 471:219–226. doi: 10.1016/S0003-2670(02)00931-5 CrossRefGoogle Scholar
  46. Ramesh A, Lee DJ, Lai JY (2007) Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge. Appl Microbiol Biotechnol 74(3):699–707. doi: 10.1007/s00253-006-0706-x CrossRefPubMedGoogle Scholar
  47. Ras M, Lefebvre D, Derlon N, Hamelin J, Bernet N, Paul E, Girbal-Neuhauser E (2013) Distribution and hydrophobic properties of extracellular polymeric substances in biofilms in relation towards cohesion. J Biotechnol 165:85–92. doi: 10.1016/j.jbiotec.2013.03.001 CrossRefPubMedGoogle Scholar
  48. Ras M, Girbal-Neuhauser E, Paul E, Lefebvre D (2008) A high yield multi-method extraction protocol for protein quantification in activated sludge. Bioresour Technol 99:7464–7471. doi: 10.1016/j.biortech.2008.02.025 CrossRefGoogle Scholar
  49. Rättö M, Verhoef R, Suihko ML, Blanco A, Schols HA, Voragen AGJ, Wilting R, Siika-aho M, Buchert J (2006) Colanic acid is an exopolysaccharide common to many enterobacteria isolated from paper-machine slimes. J Ind Microbiol Biotechnol 33:359–367. doi: 10.1007/s10295-005-0064-1 CrossRefPubMedGoogle Scholar
  50. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33. doi: 10.1111/j.1574-6968.1980.tb05599.x CrossRefGoogle Scholar
  51. Rozgonyi F, Szitha KR, Ljungh Å, Baloda SB, Hjertén S, Wadström T (1985) Improvement of the salt aggregation test to study bacterial cell-surface hydrophobicity. FEMS Microbiol Lett 30:131–138.Google Scholar
  52. Simon S, Païro B, Villain M, d’Abzac P, van Hullebusch ED, Lens PNL, Guibaud G (2009) Evaluation of size exclusion chromatography (SEC) for the characterization of extracellular polymeric substances (EPS) in anaerobic granular sludges. Bioresour Technol 100:6258–6268. doi: 10.1016/j.biortech.2009.07.013 CrossRefPubMedGoogle Scholar
  53. Sutherland BW, Toews J, Kast J (2008) Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions. J Mass Spectrom JMS 43:699–715. doi: 10.1002/jms.1415 CrossRefPubMedGoogle Scholar
  54. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9. doi: 10.1099/00221287-147-1-3 CrossRefPubMedGoogle Scholar
  55. Sutherland IW, Wilkinson JF (1971) Chemical extraction methods of microbial cells. Methods Microbiol 5:345–383. doi: 10.1016/S0580-9517(08)70642-1 CrossRefGoogle Scholar
  56. Thurman EM, Malcolm RL (1981) Preparative isolation of aquatic humic substances. Environ Sci Technol 15:463–466. doi: 10.1021/es00086a012 CrossRefPubMedGoogle Scholar
  57. Thurman EM, Malcolm RL, Aiken GR (1978) Prediction of capacity factors for aqueous organic solutes adsorbed on a porous acrylic resin. Anal Chem 50:775–779. doi: 10.1021/ac50027a028 CrossRefGoogle Scholar
  58. Tourney J, Ngwenya BT (2010) The effect of ionic strength on the electrophoretic mobility and protonation constants of an EPS-producing bacterial strain. J Colloid Interface Sci 348:348–354. doi: 10.1016/j.jcis.2010.04.082 CrossRefPubMedGoogle Scholar
  59. Villain M, Simon S, Bourven I, Guibaud G (2010) The use of a new mobile phase, with no multivalent cation binding properties, to differentiate extracellular polymeric substances (EPS), by size exclusion chromatography (SEC), from biomass used for wastewater treatment. Process Biochem 45:1415–1421. doi: 10.1016/j.procbio.2010.05.018 CrossRefGoogle Scholar
  60. Wang LL, Wang LF, Ren XM, Ye XD, Li WW, Yuan SJ, Sun M, Sheng GP, Yu HQ, Wang XK (2012) pH dependence of structure and surface properties of microbial EPS. Environ Sci Technol 46:737–744. doi: 10.1021/es203540w CrossRefPubMedGoogle Scholar
  61. Wei X, Fang L, Cai P, Huang Q, Chen H, Liang W, Rong X (2011) Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria. Environ Pollut Adaptation of Forest Ecosystems to Air Pollution and Climate Change 159:1369–1374. doi: 10.1016/j.envpol.2011.01.006 Google Scholar
  62. Wu J, Xi C (2009) Evaluation of different methods for extracting extracellular DNA from the biofilm matrix. Appl Environ Microbiol 75:5390–5395. doi: 10.1128/AEM.00400-09 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zhang P, Fang F, Chen YP, Shen Y, Zhang W, Yang JX, Li C, Guo JS, Liu SY, Huang Y, Li S, Gao X, Yan P (2014) Composition of EPS fractions from suspended sludge and biofilm and their roles in microbial cell aggregation. Chemosphere 117:59–65. doi: 10.1016/j.chemosphere.2014.05.070 CrossRefPubMedGoogle Scholar
  64. Zhang X, Bishop PL, Kinkle BK (1999) Comparison of extraction methods for quantifying extracellular polymers in biofilms. Water Sci Technol 39:211–218. doi: 10.1016/S0273-1223(99)00170-5 CrossRefGoogle Scholar
  65. Zhao W, Yang S, Huang Q, Cai P (2015) Bacterial cell surface properties: role of loosely bound extracellular polymeric substances (LB-EPS). Colloids Surf B Biointerfaces 128:600–607. doi: 10.1016/j.colsurfb.2015.03.017 CrossRefPubMedGoogle Scholar
  66. Zuriaga-Agustí E, Bes-Piá A, Mendoza-Roca JA, Alonso-Molina JL (2013) Influence of extraction methods on proteins and carbohydrates analysis from MBR activated sludge flocs in view of improving EPS determination. Sep Purif Technol 112:1–10. doi: 10.1016/j.seppur.2013.03.048 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Feishu Cao
    • 1
    • 2
    • 3
  • Isabelle Bourven
    • 2
  • Piet N.L. Lens
    • 3
  • Eric D. van Hullebusch
    • 1
    • 3
  • Yoan Pechaud
    • 1
  • Gilles Guibaud
    • 2
  1. 1.Laboratoire Géomatériaux et Environnement (EA 4508)Université Paris-Est, UPEMMarne-la-ValléeFrance
  2. 2.Groupement de Recherche Eau Sol Environnement (EA 4330), Faculté des Sciences et TechniquesUniversité de LimogesLimoges CedexFrance
  3. 3.UNESCO-IHE Institute for Water EducationDelftThe Netherlands

Personalised recommendations