Applied Microbiology and Biotechnology

, Volume 101, Issue 7, pp 2843–2851 | Cite as

Expression and secretion of glycosylated heparin biosynthetic enzymes using Komagataella pastoris

  • Jacob A. Englaender
  • Yuanyuan Zhu
  • Abhijit N. Shirke
  • Lei Lin
  • Xinyue Liu
  • Fuming Zhang
  • Richard A. Gross
  • Mattheos A. G. KoffasEmail author
  • Robert J. LinhardtEmail author
Biotechnologically relevant enzymes and proteins


Heparin, an anticoagulant drug, is biosynthesized in selected animal cells. The heparin biosynthetic enzymes mainly consist of sulfotransferases and all are integral transmembrane glycoproteins. These enzymes are generally produced in engineered Escherichia coli as without their transmembrane domains as non-glycosylated fusion proteins. In this study, we used the yeast, Komagataella pastoris, to prepare four sulfotransferases involved in heparin biosynthesis as glycoproteins. While the yields of these yeast-expressed enzymes were considerably lower than E. coli-expressed enzymes, these enzymes were secreted into the fermentation media simplifying their purification and were endotoxin free. The activities of these sulfotransferases, expressed as glycoproteins in yeast, were compared to the bacterially expressed proteins. The yeast-expressed sulfotransferase glycoproteins showed improved kinetic properties than the bacterially expressed proteins.


Heparin Biosynthetic enzymes Yeast expression Bacterial expression Kinetics 



The authors gratefully acknowledge funding from the National Institutes of Health (HL096972), the National Science Foundation (MCB-1448657), and funding from the China Scholarship Council.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317. doi: 10.1007/s00253-014-5732-5 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beckham GT, Dai Z, Matthews JF, Momany M, Payne CM, Adney WS, Baker SE, Himmel ME (2012) Harnessing glycosylation to improve cellulase activity. Curr Opin Biotechnol 23:338–345. doi: 10.1016/j.copbio.2011.11.030 CrossRefPubMedGoogle Scholar
  3. Bhaskar U, Li G, Fu L, Onishi A, Suflita M (2015) Combinatorial one-pot chemoenzymatic synthesis of heparin. Carbohydr Polym 122:399–407CrossRefPubMedGoogle Scholar
  4. Bhaskar U, Sterner E, Hickey AM, Onishi A, Zhang F, Dordick JS, Linhardt RJ (2012) Engineering of routes to heparin and related polysaccharides. Appl Microbiol Biotechnol 93:1–16. doi: 10.1007/s00253-011-3641-4 CrossRefPubMedGoogle Scholar
  5. Biedendieck R, Beine R, Gamer M, Jordan E, Buchholz K, Seibel J, Dijkhuizen L, Malten M, Jahn D (2007) Export, purification, and activities of affinity tagged Lactobacillus reuteri levansucrase produced by Bacillus megaterium. Appl Microbiol Biotechnol 74:1062–1073. doi: 10.1007/s00253-006-0756-0 CrossRefPubMedGoogle Scholar
  6. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66. doi: 10.1111/j.1574-6976.2000.tb00532.x CrossRefPubMedGoogle Scholar
  7. Chen PT, Shaw J-F, Chao Y-P, David Ho T-H, S-M Y (2010) Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in Bacillus subtilis. J Agric Food Chem 58:5392–5399. doi: 10.1021/jf100445a CrossRefPubMedGoogle Scholar
  8. Chen R (2012) Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 30:1102–1107. doi: 10.1016/j.biotechadv.2011.09.013 CrossRefPubMedGoogle Scholar
  9. Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA (1991) High-level expression of tetanus toxin fragment C in Pichia Pastoris strains containing multiple tandem integrations of the gene. Bio/Technology 9:455–460. doi: 10.1038/nbt0591-455 CrossRefPubMedGoogle Scholar
  10. Cress BF, Englaender JA, He W, Kasper D, Linhardt RJ, Koffas MAG (2014) Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. FEMS Microbiol Rev 38:660–697. doi: 10.1111/1574-6976.12056 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cress BF, Linhardt RJ, Koffas MAG (2013) Draft genome sequence of Escherichia coli strain Nissle 1917 (Serovar O6:K5:H1). Genome Announc 1:e00047-13. doi: 10.1128/genomeA.00047-13 PubMedCentralGoogle Scholar
  12. DeAngelis PL, Gunay NS, Toida T, Mao W, Linhardt RJ (2002) Identification of the capsular polysaccharides of type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively. Carbohydr Res 337:1547–1552. doi: 10.1016/S0008-6215(02)00219-7 CrossRefPubMedGoogle Scholar
  13. de Oliveira Magalhães P, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TCV, Pessoa A (2007) Methods of endotoxin removal from biological preparations: a review. J Pharm Pharm Sci 10:388–404Google Scholar
  14. Han M, Wang X, Ding H, Jin M, Yu L, Wang J, Yu X (2014) The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris. Enzym Microb Technol 54:32–37. doi: 10.1016/j.enzmictec.2013.09.014 CrossRefGoogle Scholar
  15. Huang J, Cao L, Guo W, Yuan R, Jia Z, Huang K (2012) Enhanced soluble expression of recombinant Flavobacterium heparinum heparinase I in Escherichia coli by fusing it with various soluble partners. Protein Expr Purif 83:169–176. doi: 10.1016/j.pep.2012.03.016 CrossRefPubMedGoogle Scholar
  16. Jiang Z, Wei Y, Li D, Li L, Chai P, Kusakabe I (2006) High-level production, purification and characterization of a thermostable β-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydr Polym 66:88–96. doi: 10.1016/j.carbpol.2006.02.030 CrossRefGoogle Scholar
  17. Kazenwadel C, Klebensberger J, Richter S, Pfannstiel J, Gerken U, Pickel B, Schaller A, Hauer B (2013) Optimized expression of the dirigent protein AtDIR6 in Pichia pastoris and impact of glycosylation on protein structure and function. Appl Microbiol Biotechnol 97:7215–7227. doi: 10.1007/s00253-012-4579-x CrossRefPubMedGoogle Scholar
  18. Lin-Cereghino J, Wong WW, Xiong S, Giang W, Luong LT, Vu J, Johnson SD, Lin-Cereghino GP (2005) Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. BioTechniques 38:44–48. doi: 10.2144/05381BM04 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lindahl U, Feingold D, Roden L (1986) Biosynthesis of heparin. Trends Biochem Sci 11:221–225. doi: 10.1016/0968-0004(86)90011-3 CrossRefGoogle Scholar
  20. Lohse D, Linhardt R (1992) Purification and characterization of heparin lyases from Flavobacterium heparinum. J Biol Chem 267:24347–24355PubMedGoogle Scholar
  21. Martínez JL, Liu L, Petranovic D, Nielsen J (2012) Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation. Curr Opin Biotechnol 23:965–971. doi: 10.1016/j.copbio.2012.03.011 CrossRefPubMedGoogle Scholar
  22. Mintz CS, Liu J (2013) China’s heparin revisited: what went wrong and has anything changed? J Commer Biotechnol 19:33–39. doi: 10.5912/jcb.579 CrossRefGoogle Scholar
  23. Opal SM, Scannon PJ, Vincent JL, White M, Carroll SF, Palardy JE, Parejo NA, Pribble JP, Lemke JH (1999) Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J Infect Dis 180:1584–1589. doi: 10.1086/315093 CrossRefPubMedGoogle Scholar
  24. Orman MA, Calik P, Ozdamar TH (2009) The influence of carbon sources on recombinant-human- growth-hormone production by Pichia pastoris is dependent on phenotype: a comparison of Muts and Mut+ strains. Biotechnol Appl Biochem 52:245–255. doi: 10.1042/BA20080057 CrossRefPubMedGoogle Scholar
  25. Petsch D (2000) Endotoxin removal from protein solutions. J Biotechnol 76:97–119. doi: 10.1016/S0168-1656(99)00185-6 CrossRefPubMedGoogle Scholar
  26. Pla IA, Damasceno LM, Vannelli T, Ritter G, Batt CA, Shuler ML (2006) Evaluation of Mut+ and MutS Pichia pastoris phenotypes for high level extracellular scFv expression under feedback control of the methanol concentration. Biotechnol Prog 22:881–888. doi: 10.1021/bp060012+ CrossRefPubMedGoogle Scholar
  27. Pyati P, Fitches E, Gatehouse JA (2014) Optimising expression of the recombinant fusion protein biopesticide ω-hexatoxin-Hv1a/GNA in Pichia pastoris: sequence modifications and a simple method for the generation of multi-copy strains. J Ind Microbiol Biotechnol 41:1237–1247. doi: 10.1007/s10295-014-1466-8 CrossRefPubMedGoogle Scholar
  28. Sha C, XW Y, Lin NX, Zhang M, Xu Y (2013) Enhancement of lipase r27RCL production in Pichia pastoris by regulating gene dosage and co-expression with chaperone protein disulfide isomerase. Enzym Microb Technol 53:438–443. doi: 10.1016/j.enzmictec.2013.09.009 CrossRefGoogle Scholar
  29. Shirke AN, Basore D, Butterfoss GL, Bonneau R, Bystroff C, Gross RA (2016a) Toward rational thermostabilization of Aspergillus oryzae cutinase: insights into catalytic and structural stability. Proteins Struct Funct Bioinforma 84:60–72. doi: 10.1002/prot.24955 CrossRefGoogle Scholar
  30. Shirke AN, Basore D, Holton S, Su A, Baugh E, Butterfoss GL, Makhatadze G, Bystroff C, Gross RA (2016b) Influence of surface charge, binding site residues and glycosylation on Thielavia terrestris cutinase biochemical characteristics. Appl Microbiol Biotechnol 100:4435–4446. doi: 10.1007/s00253-015-7254-1 CrossRefPubMedGoogle Scholar
  31. Suflita M, Fu L, He W, Koffas M, Linhardt RJ (2015) Heparin and related polysaccharides: synthesis using recombinant enzymes and metabolic engineering. Appl Microbiol Biotechnol 99:7465–7479. doi: 10.1007/s00253-015-6821-9 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wang W, Englaender JA, Xu P, Mehta KK, Suwan J, Dordick JS, Zhang F, Yuan Q, Linhardt RJ, Koffas M (2013) Expression of low endotoxin 3-O-sulfotransferase in Bacillus subtilis and Bacillus megaterium. Appl Biochem Biotechnol 171:954–962. doi: 10.1007/s12010-013-0415-8 CrossRefPubMedGoogle Scholar
  33. Wang Z, Ly M, Zhang F, Zhong W, Suen A, Hickey AM, Dordick JS, Linhardt RJ (2010) E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor. Biotechnol Bioeng 107:964–973. doi: 10.1002/bit.22898 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Xu Y, Masuko S, Takieddin M, Xu H, Liu R, Jing J, Mousa SA, Linhardt RJ, Liu J (2011) Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334:498–501. doi: 10.1126/science.1207478 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Yang H, Zhai C, Yu X, Li Z, Tang W, Liu Y, Ma X, Zhong X, Li G, Wu D, Ma L (2016) High-level expression of proteinase K from Tritirachium album limber in Pichia pastoris using multi-copy expression strains. Protein Expr Purif 122:38–44. doi: 10.1016/j.pep.2016.02.006 CrossRefPubMedGoogle Scholar
  36. Yang M, Johnson SC, Murthy PPN (2012) Enhancement of alkaline phytase production in Pichia pastoris: influence of gene dosage, sequence optimization and expression temperature. Protein Expr Purif 84:247–254. doi: 10.1016/j.pep.2012.06.001 CrossRefPubMedGoogle Scholar
  37. Yang S, Kuang Y, Li H, Liu Y, Hui X, Li P, Jiang Z, Zhou Y, Wang Y, Xu A, Li S, Liu P, Wu D (2013) Enhanced production of recombinant secretory proteins in Pichia pastoris by optimizing Kex2 P1’ site. PLoS One 8:e75347. doi: 10.1371/journal.pone.0075347 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yang Y, Malten M, Grote A, Jahn D, Deckwer W (2007) Codon optimized Thermobifida fusca hydrolase secreted by Bacillus megaterium. Biotechnol Bioeng 96:780–794. doi: 10.1002/bit.21167 CrossRefPubMedGoogle Scholar
  39. Zhou F, Olman V, Xu Y (2009) Large-scale analyses of glycosylation in cellulases. Genomics, Proteomics Bioinforma 7:194–199. doi: 10.1016/S1672-0229(08)60049-2 CrossRefGoogle Scholar
  40. Zhou X, Chandarajoti K, Pham TQ, Liu R, Liu J (2011) Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of 3′-phosphoadenosine-5′-phosphosulfate. Glycobiology 21:771–780. doi: 10.1093/glycob/cwr001 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Zou S, Huang S, Kaleem I, Li C (2013) N-glycosylation enhances functional and structural stability of recombinant β-glucuronidase expressed in Pichia pastoris. J Biotechnol 164:75–81. doi: 10.1016/j.jbiotec.2012.12.015 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jacob A. Englaender
    • 1
  • Yuanyuan Zhu
    • 2
  • Abhijit N. Shirke
    • 3
  • Lei Lin
    • 3
  • Xinyue Liu
    • 3
  • Fuming Zhang
    • 4
  • Richard A. Gross
    • 3
  • Mattheos A. G. Koffas
    • 1
    • 4
    Email author
  • Robert J. Linhardt
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of BiologyRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Chemical Processing Engineering of Forest ProductsNanjing Forestry UniversityNanjingChina
  3. 3.Chemistry and Chemical BiologyRensselaer Polytechnic InstituteTroyUSA
  4. 4.Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations