Applied Microbiology and Biotechnology

, Volume 100, Issue 24, pp 10265–10293 | Cite as

Current status in biotechnological production and applications of glycolipid biosurfactants

  • Bruno Nicolau Paulino
  • Marina Gabriel Pessôa
  • Mario Cezar Rodrigues Mano
  • Gustavo Molina
  • Iramaia Angélica Neri-Numa
  • Glaucia Maria Pastore
Mini-Review

Abstract

Biosurfactants are natural compounds with surface activity and emulsifying properties produced by several types of microorganisms and have been considered an interesting alternative to synthetic surfactants. Glycolipids are promising biosurfactants, due to low toxicity, biodegradability, and chemical stability in different conditions and also because they have many biological activities, allowing wide applications in different fields. In this review, we addressed general information about families of glycolipids, rhamnolipids, sophorolipids, mannosylerythritol lipids, and trehalose lipids, describing their chemical and surface characteristics, recent studies using alternative substrates, and new strategies to improve of production, beyond their specificities. We focus in providing recent developments and trends in biotechnological process and medical and industrial applications.

Keywords

Surfactants Biosurfactants Glycolipids Rhamnolipids Sophorolipids Mannosylerythritol lipids Trehalose lipids 

Notes

Acknowledgements

The authors acknowledge the funding agencies Conselho Nacional de Desenvolvimento Científico (CNPq), Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336. doi: 10.1007/s00253-010-2498-2 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahn C, Morya VK, Kim EK (2016) Tuning surface-active properties of bio-surfactant sophorolipids by varying fatty-acid chain lengths. Korean J Chem Eng 33:2127–2133. doi: 10.1007/s11814-016-0082-x CrossRefGoogle Scholar
  3. Amani H, Muller MM, Syldatk C, Hausmann R (2013) Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Appl Biochem Biotech 170:1080–1093. doi: 10.1007/s12010-013-0249-4 CrossRefGoogle Scholar
  4. Amstrong CD, Venugopal R, Qu Q (2015) Method of using sophorolipids in well treatment operations. USA US2015300139 A1Google Scholar
  5. Anderson RJ, Newman MS (1933) The chemistry of the lipids of tubercle bacilli: XXXIII. Isolation of trehalose from the acetone-soluble fat of the human tubercle bacillus. J Biol Chem 101:499–504Google Scholar
  6. Andrä J, Rademann J, Howe J, Koch MHJ, Heine H, Zähringer U, Brandenburg K (2006) Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization. Biol Chem 387:301–310. doi: 10.1515/bc.2006.040 PubMedCrossRefGoogle Scholar
  7. Andrade CJ, Andrade LM, Bution ML, Dolder MAH, Barrosm FFC, Pastore GM (2016) Optimizing alternative substrate of silmultaneous production of surfactin and 2,3-butanediol by Bacillus subtilis LB5a. Biocatal Agric Biotechnol 6:209–218. doi: 10.1016/j.bcab.2016.04.004 Google Scholar
  8. Arutchelvi JI, Doble M (2011) Mannosylerythritol lipids: microbial production and their applications. In: Soberón-Chávez G (ed) Biosurfactants, microbiology monographs 20. Springer-Verlag, Berlin, Germany, pp. 121–149. doi: 10.1007/978-3-642-14490-5_6 Google Scholar
  9. Arutchelvi JI, Bhaduri S, Uppara PV, Doble M (2008) Mannosylerythritol lipids: a review. J Ind Microbiol Biot 35:1559–1570. doi: 10.1007/s10295-008-0460-4 CrossRefGoogle Scholar
  10. Asmer H-J, Lang S, Wagner F, Wray V (1988) Microbial production, structure elucidation and bioconversion of sophorose lipids. J Am Oil Chem Soc 65:1460–1466. doi: 10.1007/bf02898308 CrossRefGoogle Scholar
  11. Asselineau C, Asselineau J (1978) Trehalose-containing glycolipids. Prog Chem Fats Other Lipids 16:59–99. doi: 10.1016/0079-6832(78)90037-x PubMedCrossRefGoogle Scholar
  12. Azuma M, Suzutani T, Sazaki K, Yoshida I, Sakuma T, Yoshida T (1987) Role of interferon in the augmented resistance of trehalose 6,6′-dimycolate-treated mice to influenza vírus infection. J Gen Virol 68:835–843. doi: 10.1099/0022-1317-68-3-835 PubMedCrossRefGoogle Scholar
  13. Baeva TA, Gein SV, Kuyukina MS, Ivshina IB, Kochina OA, Chereshnev VA (2014) Effect of glycolipid Rhodococcus biosurfactant on secretory activity of neutrophils in vitro. Bul Exp Biol Med 157:238–242. doi: 10.1007/s10517-014-2534-9 CrossRefGoogle Scholar
  14. Bafghi MK, Fazaelipoor MH (2012) Application of rhamnolipid in the formulation of a detergent. J Surfactant Deterg 15:679–684. doi: 10.1007/s11743-012-1386-4 CrossRefGoogle Scholar
  15. Bai L, McClements DJ (2016) Formation and stabilization of nanoemulsions using biosurfactants: rhamnolipids. J Colloid Interface Sci 479:71–79. doi: 10.1016/j.jcis.2016.06.047 PubMedCrossRefGoogle Scholar
  16. Bajaj A, Mayliraj S, Mudiam MKR, Patel DK, Manickam N (2014) Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT). Bioresour Technol 167:398–406. doi: 10.1016/j.biortech.2014.06.007 PubMedCrossRefGoogle Scholar
  17. Banat IM, Díaz De Rienzo MA, Quinn GA (2014a) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98:9915–9929. doi: 10.1007/s00253-014-6169-6 PubMedCrossRefGoogle Scholar
  18. Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014b) Cost effective technologies and renewable substrates for biosurfactants production. Front Microbiol 5:1–18. doi: 10.3389/fmicb.2014.00697 CrossRefGoogle Scholar
  19. Barros FFC, Ponezi AN, Pastore GM (2008) Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J Ind Microbiol Biotechnol 35:1071–1078. doi: 10.1007/s10295-008-0385-y PubMedCrossRefGoogle Scholar
  20. Basak G, Das D, Das N (2014) Dual role of acidic diacetate sophorolipid as biostabilizer for ZnO nanoparticle synthesis and biofunctionalizing agent against Salmonella enterica and Candida albicans. J Microbiol Biotechnol 24:87–96. doi: 10.4014/jmb.1307.07081 PubMedCrossRefGoogle Scholar
  21. Behrens B, Baune M, Jungkeit J, Tiso T, Blank LM, Hayen H (2016) High performance liquid chromatography-cherged aerosol detection applying an inverse gradient for quantification of rhamnolipid biosurfactants. J Chromatogr A 1455:125–132. doi: 10.1016/j.chroma.2016.05.079 PubMedCrossRefGoogle Scholar
  22. Benicasa M, Marqués A, Pinazo A, Manresa A (2010) Rhamnolipid surfactants: alternative substrates, new strategies. Adv Exp Med Biol 672:170–184. doi: 10.1007/978-1-4419-5979-9_13 CrossRefGoogle Scholar
  23. Bhangale A, Wadekar S, Kale S, Pratap A (2013b) Optimization and monitoring of water soluble substrate for synthesis of mannosylerythritol lipids by Pseudozyma antarctica (ATCC 32657). Biothecnol Bioprocess Eng 18:679–685. doi: 10.1007/s12257-012-0647-4 CrossRefGoogle Scholar
  24. Bhangale A, Wadekar S, Kale S, Bhowmick D, Pratap A (2013a) Production of sophorolipids synthesized on castor oil with glucose and glycerol by using Starmerella bombicola (ATCC 22214). Eur J Lipid Sci Technol 116:336–343. doi: 10.1002/ejlt.201300236 CrossRefGoogle Scholar
  25. Cameotra SS, Bollag JM (2003) Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons. Crit Rev Envirom Sci Technol 33:111–126. doi: 10.1080/10643380390814505 CrossRefGoogle Scholar
  26. Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82:97–116. doi: 10.1351/pac-con-09-02-10 CrossRefGoogle Scholar
  27. Cejková J, Ardan T, Cejka C, Luyckx J (2011) Favorable effects of trehalose on the development of UVB-mediated antioxidant/pro-oxidant imbalance in the corneal epithelium, proinflammatory cytokine and matrix metalloproteinase induction, and heat shock protein 70 expression. Graefes Arch Clin Exp Ophthalmol 249:1185–1194. doi: 10.1007/s00417-011-1676-y PubMedCrossRefGoogle Scholar
  28. Chayabutra C, Wu J, Ju LK (2001) Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotechnol Bioeng 72:25–33. doi: 10.1002/1097-0290(20010105)72:1%3C25::aid-bit4%3E3.0.co;2-j PubMedCrossRefGoogle Scholar
  29. Chen J, Huang PT, Zhang KY, Ding FR (2012) Isolation of biosurfactant producers, optimization and properties of biosurfactant produced by Acinetobacter sp. from petroleum-contaminated soil. J Appl Microbiol 112:660–671. doi: 10.1111/j.1365-2672.2012.05242.x PubMedCrossRefGoogle Scholar
  30. Chen J, Song X, Zhang H, Qu Y, Miao J (2006) Sophorolipid produced from the new yeast strain Wickerhamiella domercqiae induces apoptosis in H7402 human liver cancer cells. Appl Microbiol Biotechnol 72:52–59. doi: 10.1007/s00253-005-0243-z PubMedCrossRefGoogle Scholar
  31. Chen J, Zhang H, Liu Y, Fu S, Liu X (2014) Metal ions can affect the composition and production of sophorolipids by Wickerhamiella domercqiae Y2A CGMCC3798. Eur J Lipid Sci and Technol 116:1505–1512. doi: 10.1002/ejlt.201300512 CrossRefGoogle Scholar
  32. Christofi N, Ivshina I (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929. doi: 10.1046/j.1365-2672.2002.01774.x PubMedCrossRefGoogle Scholar
  33. Christova N, Tuleva B, Kril A, Georgieva M, Konstantinov S, Terziyski I, Nikolova B, Stoineva I (2013) Chemical structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Appl Biochem Biotech 170:676–689. doi: 10.1007/s12010-013-0225-z CrossRefGoogle Scholar
  34. Clarke KG, Ballot F, Reid SJ (2010) Enhanced rhamnolipid production by Pseudomonas aeruginosa under phosphate limitation. World J Microb Biot 26:2179–2184. doi: 10.1007/s11274-010-0402-y CrossRefGoogle Scholar
  35. Colak AK, Kahraman H (2013) The use of raw cheese whey and olive oil mill wastewater for rhamnolipid production by recombinant Pseudomonas aeruginosa. Environ Exp Biol 11:125–130Google Scholar
  36. Concaix FB (2003) Use of sophorolipids comprising diacetyl lactones as agent for stimulating skin fibroblast metabolism. USA US6596265 B1Google Scholar
  37. Čejková A, Schreiberová O, Jezdik R, Chudoba J, Jirku V, Řezanka T, Masak J (2014) Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa as producers of rhamnolipids. J Biotechnol 185:S119–S120. doi: 10.1016/j.jbiotec.2014.07.409 CrossRefGoogle Scholar
  38. Daniel H-J, Otto RT, Binder M, Reuss M, Syldatk C (1999) Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214 using deprotenized whey concentrates as substrates. Appl Microbiol Biotechnol 51:40–45. doi: 10.1007/s002530051360 PubMedCrossRefGoogle Scholar
  39. Daniel H-J, Reuss M, Syldatk C (1998) Production of sophorolipids in high concentration from deproneinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC20509. Biotechonol Lett 20:1153–1156. doi: 10.1023/A:1005332605003 CrossRefGoogle Scholar
  40. Daverey A, Pakshirajan K (2009) Production of sophorolipids by the yeast Candida bombicola using simple and low cost fermentative media. Food Res Int 42:499–504. doi: 10.1016/j.foodres.2009.01.014 CrossRefGoogle Scholar
  41. Daverey A, Pakshirajan K (2010) Sophorolipids from Candida bombicola using mixed hydrophilic substrates: production, purification and characterization. Colloids Surf B Biointerfaces 79:246–253. doi: 10.1016/j.colsurfb.2010.04.002 PubMedCrossRefGoogle Scholar
  42. Davey ME, Caiazza NC, O'Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036. doi: 10.1128/jb.185.3.1027-1036.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  43. De Araujo LV, Abreu F, Lins U, Santa Anna LMM, Nitschke M, Freire DMG (2011) Rhamnolipid and surfactin inhibit Listeria monocytogenes adhesion. Food Res Int 44:481–488. doi: 10.1016/j.foodres.2010.09.002 CrossRefGoogle Scholar
  44. De Sousa JR, Da Costa Correia JA, De Almeida JGL, Rodrigues S, Pessoa ODL, Medo VMM, Gonçalves LRB (2011) Evaluation of a co-product of biodiesel production as carbon source in the production of biosurfactant by Pseudomonas aeruginosa MSIC02. Process Biochem 46:1831–1839. doi: 10.1016/j.procbio.2011.06.016 CrossRefGoogle Scholar
  45. DeBosch BJ, Heitmeier MR, Mayer AL, Higgins CB, Crowley JR, Kraft TE, Chi M, Newberry EP, Chen Z, Finck BN, Davidson NO, Yarasheski KE, Hruz PW, Moley KH (2016) Trehalose inhibits solute carrier 2A (Slc2A) proteins to induce autophagy and prevent hepatic steatosis. Sci Signal 9:ra21. doi: 10.1126/scisignal.aac5472 PubMedCrossRefGoogle Scholar
  46. Deepika KV, Kalam S, Sridhar PR, Podile AR, Bramhachari PV (2016) Optimization of rhamanolipid biosurfactant production by mangrove sediment bacterium Pseudomonas aeruginosa KVD-HR42 using response surface methodology. Biocatal Agric Biotechnol 5:38–47. doi: 10.1016/j.bcab.2015.11.006 Google Scholar
  47. Deepika KV, Sridhar PR, Bramhachari PV (2015) Characterization and antifungal properties of rhamnolipids produced by mangrove sediment bacterium Pseudomonas aeruginosa strain KVD-HM52. Biocatal Agric Biotechnol 4:608–615. doi: 10.1016/j.bcab.2015.09.009 Google Scholar
  48. Delbeke EI, Roman BI, Marin GB, Van Geem KM, Stevens CV (2015) A new class of antimicrobial biosurfactants: quaternary ammonium sophorolipids. Green Chem 17:3373–3377. doi: 10.1039/c5gc00120j CrossRefGoogle Scholar
  49. Delbeke EIP, Everaert J, Uitterhaegen E, Verweire S, Verlee A, Talou T, Soetaert W, Van Bogaert INA, Stevens CV (2016a) Petroselinic acid purification and its use for the fermentation of new sophorolipids. AMB Express 6:28. doi: 10.1186/s13568-016-0199-7 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Delbeke EIP, Lozach O, Gall TL, Berchel M, Montier T, Jaffrès PA, Van Geem KM, Stevens CV (2016b) Evaluation of the transfection efficacies of quaternary ammonium salts prepared from sophorolipids. Org Biomol Chem 14:3744–3751. doi: 10.1039/c6ob00241b PubMedCrossRefGoogle Scholar
  51. Dengle-Pulate V, Bhagwat S, Prabhune A (2013) Microbial oxidation of medium chain fatty alcohol in the synthesis of sophorolipids by Candida bombicola and its physicochemical characterization. J Surfact Deterg 16:173–181. doi: 10.1007/s11743-012-1378-4 CrossRefGoogle Scholar
  52. Dengle-Pulate V, Chandorkar P, Bhagwat S, Prabhune AA (2014) Antimicrobial and SEM studies of sophorolipids synthesized using lauryl alcohol. J Surfactant Deterg 17:543–552. doi: 10.1007/s11743-013-1495-8 CrossRefGoogle Scholar
  53. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64. doi: 10.1007/s002530051648 PubMedPubMedCentralGoogle Scholar
  54. Despande M, Daniels L (1995) Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat. Bioresour Technol 54:143–150. doi: 10.1016/0960-8524(95)00116-6 CrossRefGoogle Scholar
  55. Díaz De Rienzo MA, Martin PJ (2016) Effect of mono- and di-rhamnolipids on biofilms pre-formed by Bacillus subtilis BBK006. Curr Microbiol 73:183–189. doi: 10.1007/s00284-016-1046-4 CrossRefGoogle Scholar
  56. Díaz De Rienzo MA, Banat IM, Dolman B, Winterburn J, Martin PJ (2015) Sophorolipid biosurfactants: possible use as antibacterial and antibiofilm agent. New Biotechnol 32:720–726. doi: 10.1016/j.nbt.2015.02.009 CrossRefGoogle Scholar
  57. Díaz De Rienzo MA, Kamalanathan ID, Martin PJ (2016a) Comparative study of the production of rhamnolipid biosurfactants by B. thailandensis E264 and P. aeruginosa ATCC9027 using foam fractionation. Process Biochem 51:820–827. doi: 10.1016/j.procbio.2016.04.007 CrossRefGoogle Scholar
  58. Díaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM (2016b) Pseudomonas aeruginosa biofilm disruption using microbial surfactants. J Appl Microbiol 120:868–876. doi: 10.1111/jam.13049 PubMedCrossRefGoogle Scholar
  59. Díaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM (2016c) Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel. Appl Microbiol Biotechnol 120:868–876. doi: 10.1007/s00253-016-7310-5 Google Scholar
  60. Do Valle Gomes MZ, Nitschke M (2012) Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control 25:441–447. doi: 10.1016/j.foodcont.2011.11.025 CrossRefGoogle Scholar
  61. Dobler L, Vilela LF, Almeida RV, Neves BC (2016) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol 33:123–135. doi: 10.1016/j.nbt.2015.09.005 CrossRefGoogle Scholar
  62. Dogan I, Pagilla KR, Webster DA, Stark BC (2006) Expression of Vitreoscilla haemoglobin in Gordonia amarae enhances biosurfactant production. J Ind Microbiol Biotechnol 33:693–700. doi: 10.1007/s10295-006-0097-0 PubMedCrossRefGoogle Scholar
  63. Dubeau D, Deziel E, Woods DE, Lepine F (2009) Burkholderia thailandensis harbors twoidentical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263. doi: 10.1186/1471-2180-9-263 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Duong T, Barrangou R, Russel WM, Klaenhammer TR (2006) Characterization of the tre locus and analysis of trehalose cryoprotection in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 72:1218–1225. doi: 10.1128/aem.72.2.1218-1225.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Dusane DH, Nancharaiah YV, Zinjarde SS, Venugopalan VP (2010) Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms. Colloids Surf B Biointerfaces 81:242–248. doi: 10.1016/j.colsurfb.2010.07.013 PubMedCrossRefGoogle Scholar
  66. Ebadipour N, Lotfabad TB, Yaghmaei S, RoostAazad R (2016) Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology. Prep Biochem Biotechnol 46:30–38. doi: 10.1080/10826068.2014.979204 PubMedCrossRefGoogle Scholar
  67. El-Housseiny GS, Aboulwafa MM, Aboshanab KA, Hassouna NAH (2016) Optimization of rhamnolipid production by P.aeruginosa isolate P6. J Surfact Deterg 19:943–955. doi: 10.1007/s11743-016-1845-4 CrossRefGoogle Scholar
  68. Elshafie AE, Joshi SJ, Al-Wahaibi YM, Al-Bemani AS, Al-Bahry SN, Al-Maqbali D, Banat IM (2015) Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery. Front Microbiol 6:1324. doi: 10.3389/fmicb.2015.01324 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Eraqi WA, Yassin AS, Ali AE, Amin MA (2016) Utilization of crude glycerol as a substrate for the production of rhamnolipid by Pseudomonas aeruginosa. Biotechnol Res Int 2016:1–9. doi: 10.1155/2016/3464509 CrossRefGoogle Scholar
  70. Espuny M, Egido S, Rodón I, Manresa A, Mercadé M (1996) Nutritional requeriments of a biosurfactant producing strain Rhodococcus sp 51T7. Biotechnol Lett 18:521–526. doi: 10.1007/bf00140196 CrossRefGoogle Scholar
  71. Fai AEC, Simiqueli APR, Andrade CJ, Ghiselli G, Pastore GM (2015) Optimized production of biosurfactant from Pseudozyma tsukubaensis using cassava wastewater and consecutive production of galactooligosaccharides: an integrated process. Biocatal Agric Biotechnol 4:535–542. doi: 10.1016/j.bcab.2015.10.001 Google Scholar
  72. Fan LL, Dong YC, Fan YF, Zhang J, Chen QH (2014) Production and identification of mannosylerythritol lipid-A homologs from the ustilaginomycetous yeast Pseudozyma aphidis ZJUDM34. Carbohydr Res 392:1–6. doi: 10.1016/j.carres.2014.04.013 PubMedCrossRefGoogle Scholar
  73. Fan L, Li H, Niu Y, Chen Q (2016) Characterization and inducing melanoma cell apoptosis activity of Mannosylerythritol Lipids-A produced from Pseudozyma aphidis. PLOS ONE 11(2):e0148198. doi: 10.1371/journal.pone.0148198 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Faria NT, Santos MV, Fernandes P, Fonseca LL, Fonseca C, Ferreira FC (2014) Production of glycolipid biosurfactants, mannosylerythritol lipids, from pentoses and D-glucose/D-xylose mixtures by Pseudozyma yeast strains. Process Biochem 49:1790–1799. doi: 10.1016/j.procbio.2014.08.004 CrossRefGoogle Scholar
  75. Fonseca CS, Faria NT, Ferreira FC. (2014) Enzymatic process for the production of mannosylerythritol lipids from lignocellulosic materials. Portugal PT106959Google Scholar
  76. Franzetti A, Caredda P, La Colla P, Pintus M, Tamburini E, Papacchini M, Bestetti G (2009) Cultural factors affection biosurfactant production by Gordonia sp. BS29. Int Biodeter Biodegr 63:943–947. doi: 10.1016/j.ibiod.2009.06.001 CrossRefGoogle Scholar
  77. Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Tech 112:617–627. doi: 10.1002/ejlt.200900162 CrossRefGoogle Scholar
  78. Fukuoka T, Kawamura M, Morita T, Imura T, Sakai H, Abe M, Kitamoto D (2008) A badidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfacts. Carbohydr Res 343:2947–2955. doi: 10.1016/j.carres.2008.08.034 PubMedCrossRefGoogle Scholar
  79. Funston SJ, Tsaousi K, Rudden M, Smyth TJ, Stevenson PS, Marchant R, Banat IM (2016) Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer. Appl Microbiol Biotechnol 100:7945–7956. doi: 10.1007/s00253-016-7564-y PubMedPubMedCentralCrossRefGoogle Scholar
  80. Gao R, Falkeborg M, Xu X, Guo Z (2013) Production of sophorolipids with enhanced volumetric productivity by means of high cell density fermentation. Appl Microbiol Biotechnol 97:1103–1111. doi: 10.1007/s00253-012-4399-z PubMedCrossRefGoogle Scholar
  81. Gein SV, Kuyukina MS, Ivshina IB, Baeva TA, Chereshnev VA (2011) In vitro cytokine stimulation assay for glycolipid biosurfactant from Rhodococcus ruber: role of monocyte adhesion. Cytotechnology 63:559–566. doi: 10.1007/s10616-011-9384-3 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Giani C, Wullbrandt D, Rothert R, Meiwes J (1997) Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-rhamnose. USA 5501966 AGoogle Scholar
  83. Gross RA, Schofield MH (2011) Sophorolipids analog compositions. USA WO2011127101 A1Google Scholar
  84. Gross RA, Shah V, Docel GF (2004) Spermicidal and virucidal properties of various forms of sophorolipids. USA US2004242501 A1Google Scholar
  85. Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR (2013) Potential therapeutic applications of biosurfactants. Trends Pharmacol 34:667–675. doi: 10.1016/j.tips.2013.10.002 CrossRefGoogle Scholar
  86. Gudiña EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR (2015) Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour Technol 177:87–93. doi: 10.1016/j.biortech.2014.11.069 PubMedCrossRefGoogle Scholar
  87. Gudiña EJ, Rodrigues AI, de Freitas V, Azevedo Z, Teixeira JÁ, Rodrigues LR (2016) Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresour Technol 212:144–150. doi: 10.1016/j.biortech.2016.04.027 PubMedCrossRefGoogle Scholar
  88. Gunawan S, Vorderbruggen MA, Armstrong CD (2015) Method of using sophorolipids or mannosylerythritol lipids as acid corrosion inhibitors in well treatment operations. USA US2015299556 A1Google Scholar
  89. Guo Y-P, Hu Y-Y (2014) Solubilization of moderately hydrophobic 17 α-ethinylestradiol by mono- and di-rhamnolipid solutions. Colloids Surf A Physicochem Eng Asp 445:12–20. doi: 10.1016/j.colsurfa.2013.12.076 CrossRefGoogle Scholar
  90. Gupta R, Prabhune AA (2012) Structural determination and chemical esterification of the sophorolipids produced by Candida bombicola grown on glucose and alpha-linolenic acid. Biotechnol Lett 34:701–707. doi: 10.1007/s10529-011-0818-y PubMedCrossRefGoogle Scholar
  91. Haba E, Bouhdid S, Torrego-Solana N, Marqués AM, Espuny MJ, García-Celma MJ, Manresa A (2014) Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus. Int J Pharm 476:134–141. doi: 10.1016/j.ijpharm.2014.09.039 PubMedCrossRefGoogle Scholar
  92. Haque F, Alfatah M, Ganesan K, Bhattacharyya MS (2016) Inhibitory effect of sophorolipid on Candida albicans biofilm formation and hyphal growth. Sci Rep 6:23575. doi: 10.1038/srep23575 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. doi: 10.1016/j.jhazmat.2009.03.137 PubMedCrossRefGoogle Scholar
  94. Harland CW, Botyanszki Z, Rabuka D, Bertozzi CR, Parthasarathy R (2009) Synthetic trehalose glycolipids confer desiccation resistance to supported lipid monolayers. Langmuir 25:5193–5198. doi: 10.1021/la804007a PubMedPubMedCentralCrossRefGoogle Scholar
  95. Hassan M, Essam T, Yassin AS, Salama A (2016) Optimization of rhamnolipid production by biodegrading bacterial isolates using Plackett-Burman design. Int J Biol Macromol 82:573–579. doi: 10.1016/j.ijbiomac.2015.09.057 PubMedCrossRefGoogle Scholar
  96. Hellmuth H, Bode N, Dreja M, Buhl A (2016) Detergent comprising a mannosylerythritol lipid. Germany DE102014221889Google Scholar
  97. Henkel M, Müller MM, Küller JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47:1207–1219. doi: 10.1016/j.procbio.2012.04.018 CrossRefGoogle Scholar
  98. Higashima T (2002) Novel functions and applications of trehalose. Pure Appl Chem 74:1263–1269. doi: 10.1351/pac200274071263 Google Scholar
  99. Hirata Y, Ryu M, Oda Y, Igarashi K, Nagatsuka A, Furuta T, Sugiura M (2009) Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants. J Biosci Bioeng 108:142–146. doi: 10.1016/j.jbiosc.2009.03.012 PubMedCrossRefGoogle Scholar
  100. Hoq MM, Suzutani T, Toyoda T, Horiike T, Yoshida G, Azuma IM (1997) Role of gamma delta TCR + lymphocytes in the augmented resistance of trehalose 6,6′-dimycolate-treated mice to influenza virus infection. J GenVirol 78:1597–1603. doi: 10.1099/0022-1317-78-7-1597 Google Scholar
  101. Hošková M, Ježdík R, Schreiberová O, Chudoba J, Šír M, Čejková A, Masák J, Jirků V, Řezanka T (2015) Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J Biotechnol 1193:45–51. doi: 10.1016/j.jbiotec.2014.11.014 CrossRefGoogle Scholar
  102. Hošková M, Schreiberová O, Ježdík R, Chudoba J, Masák J, Sigler K, Řezanka T (2013) Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Bioresour Technol 130:510–516. doi: 10.1016/j.biortech.2012.12.085 PubMedCrossRefGoogle Scholar
  103. Hu Y, Ju L-K (2001) Purification of lactonic sophorolipids by crystalization. J Biotech 87:263–272. doi: 10.1016/s0168-1656(01)00248-6 CrossRefGoogle Scholar
  104. Hua Z, Chen J, Lun S, Wang X (2003) Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Res 37:4143–4150. doi: 10.1016/s0043-1354(03)00380-4 PubMedCrossRefGoogle Scholar
  105. Im JH, Yanagishita H, Ikegami T, Takeyama Y, Idemoto Y, Koura N, Kitamoto D (2003) Mannosylerythritol lipids, yeast glycolipid biosurfactants, are potential affinity ligand materials for human immunoglobulin G. J Biomed Mater Res 65a:379–385. doi: 10.1002/jbm.a.10491 CrossRefGoogle Scholar
  106. Imura T, Hikosaka Y, Worakitkanchanakul W, Sakai H, Abe M, Konishi M, Minamikawa H, Kitamoto D (2007) Aqueous-phase behaviour of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases. Langmuir 23:1659–1663. doi: 10.1021/la0620814 PubMedCrossRefGoogle Scholar
  107. Imura T, Masuda Y, Minamikawa H, Fukuoka T, Konishi M, Morita T, Sakai H, Abe M, Kitamoto D (2010) Enzymatic conversion of diacetylated sophoroselipid into acetylated glucoselipid: surfasse-active properties of novel bolaform biosurfactants. J Oleo Sci 59:495–501. doi: 10.5650/jos.59.495 PubMedCrossRefGoogle Scholar
  108. Imura T, Ohta N, Inoue K, Yagi N, Negishi H, Yanagishita H, Kitamoto D (2006) Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures. Chem Eur J 12:2434–2440. doi: 10.1002/chem.200501199 PubMedCrossRefGoogle Scholar
  109. Imura T, Yanagishita H, Kitamoto D (2004) Coacervate formation from natural glycolipid: one acetyl group on the headgroup triggers coacervate-to-vesicle transition. J Am Chem Soc 126:10804–10805. doi: 10.1021/ja0400281 PubMedCrossRefGoogle Scholar
  110. Imura T, Yanagishita H, Ohira J, Sakai H, Abeb M, Kitamoto D (2005) Thermodynamically stable vesicle formation from glycolipid biosurfactant sponge phase. Colloids Surf B Biointerfaces 43:115–121. doi: 10.1016/j.colsurfb.2005.03.015 PubMedCrossRefGoogle Scholar
  111. Inaba T, Tokumoto Y, Miyazaki Y, Inoue N, Maseda H, Nakajima-Kambe T, Uchiyama H, Nomura N (2013) Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp. strain SD-74. Appl Environ Microbiol 79:7082–7890. doi: 10.1128/aem.01664-13 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Irfan-Maqsood M, Seddiq-Shams M (2014) Rhamnolipids: well-characterized glycolipids with potential broad applicability as biosurfactants. Ind Biotechnol 10:285–291. doi: 10.1089/ind.2014.0003 CrossRefGoogle Scholar
  113. Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshida Y, Yamasaki S (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888. doi: 10.1084/jem.20091750 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Isoda H, Shinmoto H, Kitamoto D, Matsumura M, Nakahara T (1997a) Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60. Biosci Biotech Bioch 61:609–614. doi: 10.1271/bbb.61.609 CrossRefGoogle Scholar
  115. Isoda H, Shinmoto H, Kitamoto D, Matsumura M, Nakahara T (1997b) Differentiation of human promyelocytic leukemia cell line HL60 by microbial extracellular glycolipids. Lipids 32:263–271. doi: 10.1007/s11745-997-0033-0 PubMedCrossRefGoogle Scholar
  116. Ivshina I, Kostina L, Krivoruchko A, Kuyukina M, Peshkur T, Anderson P, Cunningham C (2016) Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231. J Hazard Mater 312:8–17. doi: 10.1016/j.jhazmat.2016.03.007 PubMedCrossRefGoogle Scholar
  117. Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In: Soberón-Chávez G (ed) Biosurfactants, microbiology monographs 20. Springer-Verlag, Berlin, pp. 57–92Google Scholar
  118. Jain NK, Roy I (2009) Effect of trehalose on protein structure. Protein Sci 18:24–36. doi: 10.1002/pro.3 PubMedPubMedCentralGoogle Scholar
  119. Jamal A, Qureshi MZ, Ali N, Ali MI, Hameed A (2014) Enhanced production of rhamnolipids by Pseudomonas aeruginosa JQ927360 using response surface methodology. Asian J Chem 26:1044–1048. doi: 10.14233/ajchem.2014.15851 Google Scholar
  120. Jiang L, Shen C, Long X, Zhang G, Meng Q (2014) Rhamnolipids elicit the same cytotoxic sensitivity between cancer cell and normal cell by reducing surface tension of culture medium. Appl Microbiol Biotechnol 98:10187–10196. doi: 10.1007/s00253-014-6065-0 PubMedCrossRefGoogle Scholar
  121. Jiménez-Peñalver P, Gea T, Sánchez A, Font X (2016) Production of sophorolipids from winterization oil cake by solid-state fermentation: optimization, monitoring and effect of mixing. Biochem Eng J 115:93–100. doi: 10.1016/j.bej.2016.08.006 CrossRefGoogle Scholar
  122. Joshi-Navare K, Prabhune A (2013) A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. Biomed Res Int 512495:1–8. doi: 10.1155/2013/512495 CrossRefGoogle Scholar
  123. Kalyani ALT, Naga SG, Aditya AKG, Girija SG, Prabhakar T (2014) Production of rhamnolipid biosurfactant by Streptomyces coelicoflavus (NBRC 15399) using Plackett-Burman design. Eur J Biotechnol Biosci 1:7–13Google Scholar
  124. Kasture MB, Patel P, Prabhune AA, Ramana CV, Kulkarni AA, Prasad BLV (2008) Synthesis of silver nanoparticles by sophorolipids: effect of temperature and sophorolipid structure on the size of particles. J Chem Sci 120:515–520. doi: 10.1007/s12039-008-0080-6 CrossRefGoogle Scholar
  125. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress reponses to high-osmolality environments. Arch Microbiol 170:319–330. doi: 10.1007/s002030050649 PubMedCrossRefGoogle Scholar
  126. Kim SK, Kim YC, Lee S, Kim JC, Yun MY, Kim IS (2011) Insecticidal activity of rhamnolipid isolated from Pseudomonas sp EP-3 against green peach aphid (Myzus persicae). J Agr Food Chem 59:934–938. doi: 10.1021/jf104027x CrossRefGoogle Scholar
  127. Kiran GS, Ninawe AS, Lipton AN, Padian V, Selvin J (2016) Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource. Critical Rev Biotechnol 36:399–415. doi: 10.3109/07388551.2014.979758 Google Scholar
  128. Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential application of glycolipid biosurfactants—from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201. doi: 10.1016/s1389-1723(02)80149-9 PubMedCrossRefGoogle Scholar
  129. Kitamoto D, Morita T, Fukuoka T, Konishi M, Imura T (2009) Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid Interface Sci 14:315–328. doi: 10.1016/j.cocis.2009.05.009 CrossRefGoogle Scholar
  130. Kitamoto D, Yanagishita H, Endo A, Nakaiwa M, Nakane T, Akiya T (2001) Remarkable antiagglomeration effect of a yeast biosurfactant, diacylmannosylerythritol, on ice-water slurry for cold termal storage. Biotechonol Progr 17:362–365. doi: 10.1021/bp000159f CrossRefGoogle Scholar
  131. Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C, Nakahara T (1993) Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29:91–96. doi: 10.1016/0168-1656(93)90042-l CrossRefGoogle Scholar
  132. Koh A, Gross R (2016a) Molecular editing of sophorolipids by esterification of lipid moieties: effects on interfacial properties at paraffin and synthetic crude oil-water interfaces. Colloids Surf A Physicochem Eng Asp 507:170–181. doi: 10.1016/j.colsurfa.2016.07.084 CrossRefGoogle Scholar
  133. Koh A, Gross R (2016b) A versatile family of sophorolipid esters: engineering surfactant structure for stabilization of lemon oil-water interfaces. Colloids Surf A Physicochem Eng Asp 507:152–163. doi: 10.1016/j.colsurfa.2016.07.089 CrossRefGoogle Scholar
  134. Konishi M, Imura T, Fukuoka T, Morita T, Kitamoto D (2007) A yeast glycolipid biosurfactant, mannosyl-erythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system. Biotechnol Lett 29:473–480. doi: 10.1007/s10529-006-9261-x PubMedCrossRefGoogle Scholar
  135. Konishi M, Nagahama T, Fukuoka T, Morita T, Imura T, Kitamoto D, Hatada Y (2011) Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62. J Biosci Bioeng 111(6):702–705. doi: 10.1016/j.jbiosc.2011.02.004 PubMedCrossRefGoogle Scholar
  136. Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, Kitamoto D (2008) Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Appl Microbiol Biotechnol 78:37–46. doi: 10.1007/s00253-007-1292-2 PubMedCrossRefGoogle Scholar
  137. Konishi M, Yoshida Y, Horiuchi J (2015) Efficient production of sophorolipids by Starmerella bombicola using a corncob hydrolysate medium. J Biosci Bioeng 119:317–322. doi: 10.1016/j.jbiosc.2014.08.007 PubMedCrossRefGoogle Scholar
  138. Kosaric N (1992) Biosurfactant in industry. Pure Appl Chem 64:1731–1737CrossRefGoogle Scholar
  139. Kryachko Y, Nathoo S, Lai P, Voordouw J, Prenner EJ, Voordouw G (2013) Prospects for using native and recombinant rhamnolipid producer for microbially enhanced oil recovery. Int Biodeter Biodegr 81:133–140. doi: 10.1016/j.ibiod.2012.09.012 CrossRefGoogle Scholar
  140. Kügler JH, Muhle-Goll C, Kühl B, Kraft A, Heinzler R, Kirschlöfer F, Henkel M, Wray V, Luy B, Brenner-Weiss G, Lang S, Syldatk C, Hausmann R (2014) Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae. Appl Microbiol Biotechnol 98:8905–8915. doi: 10.1007/s00253-014-5972-4 PubMedCrossRefGoogle Scholar
  141. Kumar CG, Mamidyla SK, Sujitha P, Muluka H, Akkenapally S (2012) Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R. Biotechnol Prog 28:1507–1516. doi: 10.1002/btpr.1634 PubMedCrossRefGoogle Scholar
  142. Kundu D, Hazra C, Chaudhari A (2016a) Biodegradation of 2,6-dinitrotoluene and plant growth promoting traits by Rhodococcus pyridinivorans NT2: identification and toxicological analysis of metabolites and proteomic insights. Biocatal Agric Biotechnol 8:55–65. doi: 10.1016/j.bcab.2016.08.004 Google Scholar
  143. Kundu D, Hazra C, Chaudhari A (2016b) Bioremediation potential of Rhodococcus pyridinivorans NT2 in nitrotoluene-contaminated soils: the effectiveness of natural attenuation, biostimulation and bioaugmentation approaches. Soil Sediment Contam 25:637–651. doi: 10.1080/15320383.2016.1190313 CrossRefGoogle Scholar
  144. Kundu D, Hazra C, Dandi N, Chaudhari A (2013) Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation 24:775–793. doi: 10.1007/s10532-013-9627-4 PubMedCrossRefGoogle Scholar
  145. Kuppert D, Kottke U, Lattich J, Volk M, Wenk HH, Cabirol F, Schilling M, Schaffer S, Allef P (2014) Detergent composition for textiles comprising rhamnolipids having a predominant share of di-rhamnolipids. USA US2014296125 A1Google Scholar
  146. Kurtzman CP, Price NPJ, Ray KJ, Kuo T–M (2010) Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol Lett 311:140–146. doi: 10.1111/j.1574-6968.2010.02082.x PubMedCrossRefGoogle Scholar
  147. Kuyukina MS, Ivshina IB (2010) Application of Rhodococcus in bioremediation of contaminated environments. In: Alvarez HM (ed) Biology of Rhodococcus. Springer, Berlin, pp. 231–262. doi: 10.1007/978-3-642-12937-7_9 CrossRefGoogle Scholar
  148. Kuyukina MS, Ivshina IB, Baeva TA, Kochina OA, Gein SV, Chereshnev VA (2015) Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. New Biotechnol 32:559–568. doi: 10.1016/j.nbt.2015.03.006 CrossRefGoogle Scholar
  149. Kuyukina MS, Ivshina IB, Gein SV, Baeva TA, Chereshnev VA (2007) In vitro immunomodalating acitivity of biosurfactant glycolipid complex from Rhodococcus rubber. Bull Exp Biol Med 144:326–330. doi: 10.1007/s10517-007-0324-3 PubMedCrossRefGoogle Scholar
  150. Kuyukina MS, Ivshina IB, Korshunova IO, Stukova GI, Krivoruchko AV (2016) Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Exp 6:14. doi: 10.1186/s13568-016-0186-z CrossRefGoogle Scholar
  151. Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CL, Philp JC (2005) Effect of biosurfactant on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161. doi: 10.1016/j.envint.2004.09.009 PubMedCrossRefGoogle Scholar
  152. Lang S (2002) Biological amphiphilies (microbial biosurfactants). Curr Opin Colloid Interface Sci 7:12–20. doi: 10.1016/s1359-0294(02)00007-9 CrossRefGoogle Scholar
  153. Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Anton Leeuw 74:59–70CrossRefGoogle Scholar
  154. Lang S, Wullbrandt D (1999) Rhamnose lipids—biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32. doi: 10.1007/s002530051358 PubMedCrossRefGoogle Scholar
  155. Lang S, Brakemeier A, Heckmann R, Spockner S, Rau U (2000) Production of native and modified sophorose lipids. Chim Oggi 18:76–79Google Scholar
  156. Lang S, Katsiwela E, Wagner F (1989) Antimicrobial effects of biosurfactants. Fett Wiss Technol 91:363–366. doi: 10.1002/lipi.19890910908 Google Scholar
  157. Lechuga M, Fernández-Serrano M, Jurado E, Núñez-Olea J, Ríos F (2016) Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicol Environ Saf 125:1–8. doi: 10.1016/j.ecoenv.2015.11.027 PubMedCrossRefGoogle Scholar
  158. Li S, Pi Y, Bao M, Zhang C, Zhao D, Li Y, Sun P, Lu J (2015) Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons. Mar Pollut Bull 101:219–225. doi: 10.1016/j.marpolbul.2015.09.059 PubMedCrossRefGoogle Scholar
  159. Liu H, Shao B, Long X, Yao Y, Meng Q (2016) Foliar penetration enhanced by biosurfactant rhamnolipid. Colloids Surf B Biointerfaces 145:548–554. doi: 10.1016/j.colsurfb.2016.05.058 PubMedCrossRefGoogle Scholar
  160. Liu J, Chen Y, Xu R, Jia Y (2013) Screening and evaluation of biosurfactant-producing strains isolated from oilfield wastewater. Indian J Microbiol 53:168–174. doi: 10.1007/s12088-013-0379-y PubMedPubMedCentralCrossRefGoogle Scholar
  161. Long X, Zhang G, Shen C, Guansong S, Wang R, Yin L, Meng Q (2013) Application of rhamnolipid as a novel biodemulsifier for destabilizing waste crude oil. Bioresour Technol 131:1–5. doi: 10.1016/j.biortech.2012.12.128 PubMedCrossRefGoogle Scholar
  162. Lotfabad TB, Abassi H, Ahmadkhaniha R, Roostaazad R, Massomi F, Zahiri HS, Ahmadian G, Vali H, Noghabi KA (2010) Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Colloids Surf B Biointerfaces 81:397–405. doi: 10.1016/j.colsurfb.2010.06.026 PubMedCrossRefGoogle Scholar
  163. Lourith N, Kanlayavattanakul M (2009) Natural surfactants used in cosmetics: glycolipids. Int J Cosmetic Sci 31:255–261. doi: 10.1111/j.1468-2494.2009.00493.x CrossRefGoogle Scholar
  164. Lovaglio RB, Silva VL, Ferreira H, Hausmann R, Contiero J (2015) Rhamnolipids know-how: looking for strategies for its industrial dissemination. Biotechology Adv 33:1715–1726. doi: 10.1016/j.biotechadv.2015.09.002 CrossRefGoogle Scholar
  165. Luna JM, Rufino RD, Sarubbo LA, Rodrigues LRM, Teixeira JAC, Campos-Takaki GM (2011) Evaluation antimicrobial and antiadhesive properties of the biosurfactant Lunasan produced by Candida sphaerica UCP 0995. Curr Microbiol 62:1527–1534. doi: 10.1007/s00284-011-9889-1 PubMedCrossRefGoogle Scholar
  166. Ma K-Y, Sun M-Y, Dong W, He C-Q, Chen F-L, Ma Y-L (2016) Effects of nutrition optimization strategy on rhamnolipid production in a Pseudomonas aeuroginosa strain DN1 for bioremediation of crude oil. Biocatal Agric Biotechnol 6:144–151. doi: 10.1016/j.bcab.2016.03.008 Google Scholar
  167. Ma X, Li H, Song X (2012) Surface and biological activity of sophorolipid molecules produced by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576. J Colloid Interface Sci 376:165–172. doi: 10.1016/j.jcis.2012.03.007 PubMedCrossRefGoogle Scholar
  168. Ma XJ, Li H, Wang DX, Song X (2014) Sophorolipid production from delignined corncob residue by Wickerhamiella domercqiae var. sophorolipid CGMCC1576 and Cryptococcus curvatus ATCC 96219. Appl Microbiol Biotechnol 98:475–483. doi: 10.1007/s00253-013-4856-3 PubMedCrossRefGoogle Scholar
  169. Maddikeri GL, Gogate PR, Pandit AB (2015) Improved synthesis of sophorolipids from waste cooking oil using fed batch approach in the presence of ultrasound. Chem Eng J 263:479–487. doi: 10.1016/j.cej.2014.11.010 CrossRefGoogle Scholar
  170. Magalhães L, Nitschke M (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergisitic interaction with nisin. Food Control 29:138–142. doi: 10.1016/j.foodcont.2012.06.009 CrossRefGoogle Scholar
  171. Maingault M (1999) Utilization of sophorolipids as therapeutically active substances or cosmetic products, in particular for the treatment of the skin. USA US5981497 AGoogle Scholar
  172. Marqués AM, Pinazo A, Farfan M, Aranda FJ, Teruel JA, Ortiz A, Manresa A, Espuny MJ (2009) The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids 158:110–117. doi: 10.1016/j.chemphyslip.2009.01.001 PubMedCrossRefGoogle Scholar
  173. Mata-Sandoval JC, Karns J, Torrents A (2001) Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2. Microbiol Res 155:249–256. doi: 10.1016/s0944-5013(01)80001-x PubMedCrossRefGoogle Scholar
  174. Matsumoto Y, Cao E, Ueoka R (2013a) Novel liposomes composed of dimyristoylphosphatidylcholine and trehalose surfactants inhibit the growth of tumor cells along with apoptosis. Biol Pharm Bull 36:1258–1268. doi: 10.1248/bpb.b13-00266 PubMedCrossRefGoogle Scholar
  175. Matsumoto Y, Cao E, Ueoka R (2013b) Growth inhibition by novel liposomes including trehalose surfactant against hepatocarcinoma cell along with apoptosis. Anticancer Res 33:4727–4740PubMedGoogle Scholar
  176. Matsumoto Y, Kuwabara K, Ichihara H, Kuwano M (2016) Therapeutic effects of trehalose liposomes against lymphoblastic leukemia leading to apoptosis in vitro and in vivo. Bioorg Med Chem Lett 26:301–305. doi: 10.1016/j.bmcl.2015.12.025 PubMedCrossRefGoogle Scholar
  177. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2008a) Identification of Ustilago cynodontis as a new producer of glycolipid biosurfactants, mannosylerythritol lipids, based on ribosomal DNA sequences. J Oleo Sci 57:549–556. doi: 10.5650/jos.57.549 PubMedCrossRefGoogle Scholar
  178. Morita T, Konishi M, Fukuoka T, Imura T, Yamamoto S, Kitagawa M, Sogabe A, Kitamoto D (2008b) Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J Oleo Sci 57:123–131. doi: 10.5650/jos.57.123 PubMedCrossRefGoogle Scholar
  179. Morita T, Fukuoka T, Imura T, Hirose N, Kitamoto D (2012) Isolation and screening of glycolipid biosurfactant producers from sugarcane. Biosci Biotechnol Biochem 76:1788–1791. doi: 10.1271/bbb.120251 PubMedCrossRefGoogle Scholar
  180. Morita T, Fukuoka T, Imura T, Kitamoto D (2013) Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol 97:4691–4700. doi: 10.1021/bp000159f PubMedCrossRefGoogle Scholar
  181. Morita T, Fukuoka T, Imura T, Kitamoto D (2015) Mannosylerythritol lipids: production and applications. J Oleo Sci 64:133–141. doi: 10.5650/jos.ess14185 PubMedCrossRefGoogle Scholar
  182. Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2009a) Production of glycolipid biosurfactants, mannosylerythritol lipids, by Ustilago scitaminea NBRC 32730. Biosci Biotechol Biochem 73:788–792. doi: 10.1271/bbb.80901 CrossRefGoogle Scholar
  183. Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2009b) Production of glycolipids biosurfactants, mannosylerythritol lipids, using sucrose by fungal and yeast strains, and their interfacial properties. Biosci Biotechol Biochem 73:2352–2355. doi: 10.1271/bbb.90439 CrossRefGoogle Scholar
  184. Morita T, Ishibashi Y, Hirose N, Wada K, Takahashi M, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2011a) Production and characterization of a glycolipid biosurfactant, mannosylerythritol lipid B, from sugarcane juice by Ustilago scitaminea NBRC 32730. Biosci Biotechol Biochem 75:1371–1376. doi: 10.1271/bbb.110221 CrossRefGoogle Scholar
  185. Morita T, Kitagawa M, Yamamoto S, Sogabe A, Imura T, Fukuoka T, Kitamoto D (2010a) Glycolipid biosurfactants, mannosylerythritol lipids, repair the damaged hair. J Oleo Sci 59:267–272. doi: 10.5650/jos.59.267 PubMedCrossRefGoogle Scholar
  186. Morita T, Ogura Y, Takashima M, Hirose N, Fukuoka T, Imura T, Kondo Y, Kitamoto D (2011b) Isolation of Pseudozyma churashimaensis sp. Nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J Biosci Bioengin 112:137–144. doi: 10.1016/j.jbiosc.2011.04.008 CrossRefGoogle Scholar
  187. Morita T, Takashima M, Fukuoka T, Konishi M, Imura T, Kitamoto D (2010b) Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diasteomer type of mannosylerythritol lipid-B. Appl Microbiol Biotechnol 88:679–688. doi: 10.1007/s00253-010-2762-5 PubMedCrossRefGoogle Scholar
  188. Morita Y, Tadokoro S, Sasai M, Kitamoto D, Hirashima N (2011c) Biosurfactant mannosyl-erythritol lipid inhibits secretion of inflammatory mediators from RBL-2H3 cells. BBA- Gen Subjects 810:1302–1308. doi: 10.1016/j.bbagen.2011.07.002 CrossRefGoogle Scholar
  189. Morya VK, Park J, Kim TJ, Jeon S, Kim E (2013) Production and characterization of low molecular weight sophorolipid under fed-batch culture. Bioresour Technol 143:282–288. doi: 10.1016/j.biortech.2013.05.094 PubMedCrossRefGoogle Scholar
  190. Mukherjee AK, Das K (2010) Microbial surfactants and their potential applications: an overview. In: Biosurfactants; Springer series: Advances in Experimental Medicine and Biology. Sen, R. (Ed). Springer Science + Business Media. New York, USA, .672, pp. 54–64.Google Scholar
  191. Muller MM, Hausamann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91:251–264. doi: 10.1007/s00253-011-3368-2 PubMedCrossRefGoogle Scholar
  192. Mutalik SR, Vaidya BK, Joshi RM, Desai KM, Nene SN (2008) Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour Technol 99:1875–7880. doi: 10.1016/j.biortech.2008.02.027 CrossRefGoogle Scholar
  193. Nalini S, Parthasarathi R (2013) Biosurfactant production by Serratia rubidaea SNAU02 isolated from hydrocarbon contaminated soil and its physico-chemical characterization. Bioresour Tech 147:619–622. doi: 10.1016/j.biortech.2013.08.041 CrossRefGoogle Scholar
  194. Nalini S, Parthasarathi R (2014) Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresour Technol 173:231–238. doi: 10.1016/j.biortech.2014.09.051 PubMedCrossRefGoogle Scholar
  195. Nayak AS, Vijaykumar MH, Karegoudar TB (2009) Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation. Int Biodeterior Biodegradation 63:73–79. doi: 10.1016/j.ibiod.2008.07.003 CrossRefGoogle Scholar
  196. Nguyen TTL, Edelen A, Neighbors B, Sabatini DA (2010) Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications. J Colloid Interface Sci 348:498–504. doi: 10.1016/j.jcis.2010.04.053 PubMedCrossRefGoogle Scholar
  197. Nikolopoulou M, Pasadakis N, Norf H, Kalogerakis N (2013) Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Mar Pollut Bull 77:37–44. doi: 10.1016/j.marpolbul.2013.10.038 PubMedCrossRefGoogle Scholar
  198. Nitschke M, Costa SGVAO (2007) Biosurfactants in food industry. Trends Food Sci Tech 18:252–259. doi: 10.1016/j.tifs.2007.01.002 CrossRefGoogle Scholar
  199. Nitschke M, Pastore GM (2003) Cassava flour wastewater as a substrate for biosurfactant production. Appl Biochem Biotechnol 106:295–301. doi: 10.1007/978-1-4612-0057-4_24 CrossRefGoogle Scholar
  200. Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97:336–341. doi: 10.1016/j.biortech.2005.02.044 PubMedCrossRefGoogle Scholar
  201. Nitschke M, Costa SGVAO, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Adv 21:1593–1600. doi: 10.1021/bp050239p Google Scholar
  202. Ohlendorf B, Lorezen W, Kehraus S, Krick A, Bode HB, König GM (2009) Myxotyrosides A and B, unusual rhamnosides from Myxococcus sp. J Nat Prod 72:82–86. doi: 10.1021/np8005875 PubMedCrossRefGoogle Scholar
  203. Onwosi CO, Odibo FJ (2012) Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J Microbiol Biotechnol 28:937–942. doi: 10.1007/s11274-011-0891-3 PubMedCrossRefGoogle Scholar
  204. Ortiz A, Teruel JA, Manresa A, Espuny MJ, Marqués A, Aranda FJ (2011) Effects of a bacterial trehalose lipid on phosphatidylglycerol membranes. Biochim Biophys Acta 1808:2067–2072. doi: 10.1016/j.bbamem.2011.05.003 PubMedCrossRefGoogle Scholar
  205. Pacheco GJ, Ciapina EMP, Gomes EB, Pereira Junior N (2010) Biosurfactant production by Rhodococcus erythropolis and its application to oil removal. Braz J Microbiol 41:685–693. doi: 10.1590/s1517-83822010000300019 PubMedPubMedCentralCrossRefGoogle Scholar
  206. Parekh VJ, Patravale VB, Pandit AB (2012) Mango kernel fat: a novel lipid source for the fermentative production of sophorolipid biosurfactant using Starmerella bombicola NRRL-Y 17069. Ann Biol Res 3:1798–1803Google Scholar
  207. Parry AJ, Parry NJ, Peilow AC, Stevenson PS (2012) Combinations of rhamnolipids and enzymes for improved cleaning. USA WO2012010406 A1Google Scholar
  208. Peng Y, Munoz-Pinto DJ, Chen M, Decatur J, Hahn M, Gross RA (2014) Poly(sophorolipid) structural variation: effects on biomaterial physical and biological properties. Biomacromolecules 15:4214–4227. doi: 10.1021/bm501255j PubMedCrossRefGoogle Scholar
  209. Peng Y, Totsingan F, Meier MAR, Steinmann M, Wurm F, Koh A, Gross RA (2015) Sophorolipids: expanding structural diversity by ring-opening cross-metathesis. Eur J Lipid Sci Tech 117:217–228. doi: 10.1002/ejlt.201400466 CrossRefGoogle Scholar
  210. Pereira AG, Pacheco GJ, Tavares LF, Neves BC, Kronemberger FA, Reis RS, Freire DMG (2013) Optimization of biosurfactant production using waste from biodiesel industry in a new membrane assisted bioreactor. Process Biochem 48:1271–1278. doi: 10.1016/j.procbio.2013.06.028 CrossRefGoogle Scholar
  211. Petrikov K, Delegan Y, Surin A, Ponamoreva O, Puntus I, Filonov A, Bonorin A (2013) Glycolipids of Pseudomonas and Rhodococcus oil-degrading bacteria used in bioremediation preparations: formation and structure. Process Biochem 48:931–935. doi: 10.1016/j.procbio.2013.04.008 CrossRefGoogle Scholar
  212. Phillips CA (2016) Bacterial biofilms in food processing environments: a review of recent developments in chemical and biological control. Int J Food Sci Tech 51:1731–1743. doi: 10.1111/ijfs.13159 CrossRefGoogle Scholar
  213. Pinzon NM, Zhang Q, Koganti S, Ju LK (2009) Advances in bioprocess development of rhamnolipid and sophorolipid production. In: Hayes DG, Kitamoto D, Solaiman DKY, Ashby RD (eds) Biobase surfactants and detergents—synthesis, properties, and applications. AOCS Press, Urbana, IL, pp. 77–105Google Scholar
  214. Prabhune A, Fox SR, Ratledge C (2002) Transformation of arachidonic acid to 19-hydroxy- and 20-hydroxy-eicosatetraenoic acids using Candida bombicola. Biotechnol Lett 24:1041–1044. doi: 10.1023/A:1015662013985 CrossRefGoogle Scholar
  215. Price NPJ, Ray KJ, Vermillion KE, Dunlap CA, Kurtzman CP (2012) Structural characterization of novel sophorolipid biosurfactants from a newly identified species of Candida yeast. Carbohydr Res 348:33–41. doi: 10.1016/j.carres.2011.07.016 PubMedCrossRefGoogle Scholar
  216. Quadros CP, Duarte MCT, Pastore GM (2011) Biological activies of a mixture of biosurfactant from Bacillus subtilis and alkaline lipase from Fusarium oxysporum. Braz J Microbiol 42:354–361. doi: 10.1590/s1517-83822011000100045 CrossRefGoogle Scholar
  217. Rashad MM, Nooman MU, Ali MM, Al-Kashef AS, Mahmound AE (2014) Production, characterization and anticancer activity of Candida bombicola sophorolipids by means of solid state fermentation of sunflower oil cake and soybean oil. Grasas Aceites 65(2):e017. doi: 10.3989/gya.098413 CrossRefGoogle Scholar
  218. Rau U, Nguyen LA, Schulz S, Wray V, Nimtz M, Roeper H, Koch H, Lang S (2005) Formation and analysis of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechol 66:551–559. doi: 10.1007/s00253-004-1672-9 CrossRefGoogle Scholar
  219. Recke VK, Beyrle C, Gerlitzki M, Hausmann R, Syldatk C, Wray V, Tokuda H, Suzuki N, Lang S (2013) Lipase-catalyzed acylation of microbial mannosylerythritol lipids (biosurfactants) and their characterization. Carbohydr Res 24(373):82–88. doi: 10.1016/j.carres.2013.03.013 CrossRefGoogle Scholar
  220. Ribeiro IA, Bronze MR, Castro MF, Ribeiro MHL (2012) Optimization and correlation of HPLC-ELSD and HPLC-MS/MS methods for identification and characterization of sophorolipids. J Chromatogr B 899:72–88. doi: 10.1016/j.jchromb.2012.04.037 CrossRefGoogle Scholar
  221. Ribeiro IAC, Faustino CMC, Guerreiro PS, Frade RFM, Bronze MR, Castro MF, Ribeiro MHL (2015) Development of novel sophorolipids with improved cytotoxic activity toward MDA-MB-231 breast cancer cells. J Mol Recognit 28:155–165. doi: 10.1002/jmr.2403 PubMedCrossRefGoogle Scholar
  222. Rikalovic MG, Abdel-Mawgoud AM, Déziel E, Gojgic-Cvijovic GD, Nestorovic Z, Vrvic MM, Karadzic IM (2013) Comparative analysis of rhmanolipids from novel environmental isolates of Pseudomonas aeruginosa. J Surfactants and Deterg 16:673–682. doi: 10.1007/s11743-013-1462-4 CrossRefGoogle Scholar
  223. Rispoli FJ, Badia D (2009) A new efficient mixture screening design for optimization of media. Biotechnol Prog 25:980–985. doi: 10.1002/btpr.225 PubMedCrossRefGoogle Scholar
  224. Rispoli FJ, Badia D, Shah V (2010) Optimization of the fermentation media for sophorolipid production from Candida bombicola ATCC 22214 using a simplex centroid design. Biotechnol Prog 26:938–944. doi: 10.1002/btpr.399 PubMedGoogle Scholar
  225. Rocha M, Mendes J, Giro M, Melo V, Gonçaves L (2014) Biosurfactant production by Pseudomonas aeruginosa MSIC02 in chashew apple juice using a 24 full factorial experimental design. Chem Ind Chem Eng Q 20:49–58. doi: 10.2298/ciceq120518100r CrossRefGoogle Scholar
  226. Roelants SLKW, Ciesielska K, De Maeseneire SL, Everaert B, Denon Q, Moens H, Vanlerberghe B, Van Bogaert INA, Van der Meeren P, De Vreese B, Soetaert W (2016) Towards the industrialization of new biosurfactants: biotechnological opportunities for the lactone esterase gene from Starmerella bombicola. Biotechnol Bioeng 11:550–559. doi: 10.1002/bit.25815 CrossRefGoogle Scholar
  227. Rolland F, Moore B, Shee J (2002) Sugar sensing and signaling in plant. Plant Cell 14:S185–S205. doi: 10.1105/tpc.010455 PubMedPubMedCentralGoogle Scholar
  228. Rooney AP, Price NPJ, Ray KJ, Kuo T-M (2009) Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett 295:82–87. doi: 10.1111/j.1574-6968.2009.01581.x PubMedCrossRefGoogle Scholar
  229. Rudden M, Tsauosi K, Marchant R, Banat IM, Smyth TJ (2015) Development and validation of an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the quantitative determination of rhamnolipid congeners. Appl Microbiol Biotechnol 99:9177–9187. doi: 10.1007/s00253-015-6837-1 PubMedCrossRefGoogle Scholar
  230. Ryll R, Kumazawa Y, Yano I (2001) Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids—a review. Microbiol Immunol 45:801–811. doi: 10.1111/j.1348-0421.2001.tb01319.x PubMedCrossRefGoogle Scholar
  231. Řezanka T, Siristova L, Sigler K (2011) Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles 15:697–709. doi: 10.1007/s00792-011-0400-5 PubMedCrossRefGoogle Scholar
  232. Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016. doi: 10.1007/s00253-012-4641-8 PubMedPubMedCentralCrossRefGoogle Scholar
  233. Sajna KV, Sukumaran RK, Jayamurthy H, Reddy KK, Kanjilal S, Prasad RBN, Pandey A (2013) Studies on biosurfactants from Pseudozyma sp. NII 08165 and their potential application as laundry detergent additives. Biochem Eng J 78:85–92. doi: 10.1016/j.bej.2012.12.014 CrossRefGoogle Scholar
  234. Salmani Abyaneh A, Fazaelipoor MH (2016) Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation. J Environ Manag 165:184–187. doi: 10.1016/j.jenvman.2015.09.034 CrossRefGoogle Scholar
  235. Sari M, Kanti A, Artika M, Kusharyoto W (2013) Identification of Pseudozyma hubeiensis Y10BS025 as a potent producer of glycolipid biosurfactant mannosylerythritol lipids. Am J Biochem Biotechnol 9:430–437. doi: 10.3844/ajbbsp.2013.430.437 CrossRefGoogle Scholar
  236. Schulz A, Willemsen Y, Schimiedel P, Kropf C, Bode N, Hellmuth H (2016) Removal of antiperspirant soilings. Germany DE102014225184Google Scholar
  237. Sha R, Jiang L, Meng Q, Zhang G, Song Z (2011) Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. J Basic Microbiol 52:458–466. doi: 10.1002/jobm.201100295 PubMedCrossRefGoogle Scholar
  238. Shah S, Prabhune A (2007) Purification by silica gel chromatography using dialysis tubing and characterization of sophorolipids produced from Candida bombicola grown on glucose and arachidonic acid. Biotechnol Lett 29:267–272. doi: 10.1007/s10529-006-9221-5 PubMedCrossRefGoogle Scholar
  239. Shah V, Doncel GF, Seyoum T, Eaton KM, Zalenskaya I, Hagver R, Azim A, Gross R (2005) Sophorolipids, microbial glycolipids with anti-human immunodeficiency vírus and sperm-immobilizing activities. Antimicrob Agents Chemother 49:4093–4100. doi: 10.1128/aac.49.10.4093-4100.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  240. Shah V, Jurjevic M, Badia D (2007) Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnol Prog 23:512–515. doi: 10.1021/bp0602909 PubMedCrossRefGoogle Scholar
  241. Shao L, Song X, Ma X, Li H, Qu Y (2012) Bioactivities of sophorolipid with different structures against human esophageal cancer cells. J Surg Res 173:286–291. doi: 10.1016/j.jss.2010.09.013 PubMedCrossRefGoogle Scholar
  242. Shao Z (2011) Trehalolipids. In: Soberón-Chávez G (ed) Biosurfactants, microbiology monographs 20. Springer-Verlag, Berlin, pp. 121–149. doi: 10.1007/978-3-642-14490-5_5 Google Scholar
  243. Shin JD, Kim YB, Lee HB, Choi SW, Kim EK (2008) Characteristics of sophorolipid depended on substrates. J Biotechnol 136:S504. doi: 10.1016/j.jbiotec.2008.07.1182 CrossRefGoogle Scholar
  244. Shin JD, Lee J, Kim YB, Han I-S, Kim E-K (2010) Production and characterization of methyl ester sophorolipids with 22-carbon-fatty acids. Bioresour Technol 101:3170–3174. doi: 10.1016/j.biortech.2009.12.019 PubMedCrossRefGoogle Scholar
  245. Singh AK, Cameotra SS (2014) Influence of microbial and synthetic surfactant on the biodegradation of atrazine. Environ Sci Pollut Res 21:2088–2097. doi: 10.1007/s11356-013-2127-6 CrossRefGoogle Scholar
  246. Soberón-Chávez G, Maier RM (2011) Biosurfactants: a general overview. In: Soberón-Chávez G (ed) Biosurfactants, microbiology monographs 20. Springer-Verlag, Berlin, pp. 1–11Google Scholar
  247. Soberón-Chavez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725. doi: 10.1007/s00253-005-0150-3 PubMedCrossRefGoogle Scholar
  248. Solaiman DKY, Ashby RD, Zerkowski JA, Foglia TA (2007) Simplified soy molasses-based medium for reduced-cost production of sophorolipids by Candida bombicola. Biotechnol Lett 29:1341–1347. doi: 10.1007/s10529-007-9407-5 PubMedCrossRefGoogle Scholar
  249. Sponza DT, Gök O (2010) Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater. Bioresour Technol 101:914–924. doi: 10.1016/j.biortech.2009.09.022 PubMedCrossRefGoogle Scholar
  250. Sudo T, Zhao X, Wakamatsu Y, Shibahara M, Nomura N, Nakahara T, Suzuki A, Kobayashi Y, Jin C, Murata T, Yokohama KK (2000) Induction of the differentiation of human HL60 promyelocytic leukemia cell line by succinoyl trehalose lipids. Cytotechnology 33:259–264. doi: 10.1023/A:1008137817944 PubMedPubMedCentralCrossRefGoogle Scholar
  251. Sutcliffe IC (1998) Cell envelope composition and organization in the genus Rhodococcus. Anton Leeuw 74:49–58. doi: 10.1023/A:1001747726820 CrossRefGoogle Scholar
  252. Syldatk C, Lang S, Wagner F, Wray V, Witte L (1985) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch C 40:51–60PubMedGoogle Scholar
  253. Takahashi M, Morita T, Fukuoka T, Kitamoto D (2012) Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H(2)O(2)-induced oxidative stress in cultured human skin fibroblasts. J Oleo Sci 61:457–464. doi: 10.5650/jos.61.457 PubMedCrossRefGoogle Scholar
  254. Tavares LF, Silva PM, Junqueira M, Mariano DC, Nogueira FC, Domont GB, Freire DM, Neves BC (2013) Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl Microbiol Biotechnol 97:1909–1921. doi: 10.1007/s00253-012-4454-9 PubMedCrossRefGoogle Scholar
  255. Teruel JA, Ortiz A, Aranda FJ (2014) Interactions of a bacterial trehalose lipid with phosphatidylglycerol membranes at low ionic strength. Chem Phys Lipids 181:34–39. doi: 10.1016/j.chemphyslip.2014.03.005 PubMedCrossRefGoogle Scholar
  256. Toribio J, Escalante AE, Soberon-Chavez G (2010) Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. Eur J Lipid Sci Technol 112:1082–1087. doi: 10.1002/ejlt.200900256 CrossRefGoogle Scholar
  257. Tuleva B, Christova N, Cohen R, Antonova D, Todorov T, Stoineva I (2009) Isolation and characterization of trehalose tetraester biosurfactants from soil strain Micrococcus luteus BN56. Process Biochem 44:135–141. doi: 10.1016/j.procbio.2008.09.016 CrossRefGoogle Scholar
  258. Tuleva B, Christova N, Cohen R, Stoev G, Stoineva I (2008) Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J Appl Microbiol 104:1703–1710. doi: 10.1111/j.1365-2672.2007.03680.x PubMedCrossRefGoogle Scholar
  259. Uchida Y, Misawa S, Nakahara T, Tabuchi T (1989) Factors affecting the production of succinoyl trehalose lipids by Rhodococcus erythropolis SD-74 grown on n-alkanes. Agric Biol Chem 53:765–769. doi: 10.1271/bbb1961.53.765 Google Scholar
  260. Van Bogaert I, Fleurackers S, Van Kerrebroeck S, Develter D, Soetaert W (2011b) Production of new-to-nature sophorolipids by cultivating the yeast Candida bombicola on unconventional hydrophobic substrates. Biotechnol Bioeng 108:734–741. doi: 10.1002/bit.23004 PubMedCrossRefGoogle Scholar
  261. Van Bogaert INA, Soetaert W (2011) Sophorolipids. In: Soberón-Chávez G (ed) Biosurfactants, microbiology monographs 20. Springer-Verlag, Berlin, Germany, pp. 179–210. doi: 10.1007/978-3-642-14490-5_7 Google Scholar
  262. Van Bogaert INA, Sabirova J, Develter D, Soetaert W, Vandamme EJ (2009) Knocking out the MFE-2 gene of Candida bombicola leads to improved medium-chain sophorolipid production. FEMS Yeast Res 9:610–617. doi: 10.1111/j.1567-1364.2009.00501.x PubMedCrossRefGoogle Scholar
  263. Van Bogaert INA, Zhang JX, Soetaert W (2011a) Microbial synthesis of sophorolipids. Process Biochem 46:821–833. doi: 10.1016/j.procbio.2011.01.010 CrossRefGoogle Scholar
  264. Varvaresou A, Iakovou K (2015) Biosurfactants in cosmetic and biopharmaceuticals. Lett Appl Microbiol 61:214–223. doi: 10.1111/lam.12440 PubMedCrossRefGoogle Scholar
  265. Wadekar SD, Kale SB, Lali AM, Bhowmick DN, Pratap AP (2012) Jatropha oil and karanja oil as carbon sources for production of sophorolipids. Eur J Lipid Sci Technol 114:823–832. doi: 10.1002/ejlt.201100282 CrossRefGoogle Scholar
  266. Wakamatsu Y, Zhao X, Jin C, Day N, Shibahara M, Nomura N, Nakahara T, Murata T, Yokoyama KK (2001) Mannosylerythritol lipid induces characteristics of neuronal differentiation in PC12 cells through an ERK-related signal cascade. Eur J Biochem 268:374–383. doi: 10.1046/j.1432-1033.2001.01887.x PubMedCrossRefGoogle Scholar
  267. Welsh KJ, Hunter RL, Actor JK (2013) Trehalose 6,6′-dimycolate—a coat to regulate tuberculosis immunopathogenesis. Tuberculosis 93(S.1):S3–S9. doi: 10.1016/s1472-9792(13)70003-9 PubMedCrossRefGoogle Scholar
  268. White DA, Hird LC, Ali ST (2013) Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol 115:744–755PubMedCrossRefGoogle Scholar
  269. Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Factories 10:80. doi: 10.1186/1475-2859-10-80 CrossRefGoogle Scholar
  270. Worakitkanchanakul W, Imura T, Fukuoka T, Morita T, Sakai H, Abe M, Rujiravanit R, Chavadej S, Minamikawa H, Kitamoto D (2008) Aqueous-phase behaviour and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Colloids Surf B Biointerfaces 65:106–112. doi: 10.1016/j.colsurfb.2008.03.009 PubMedCrossRefGoogle Scholar
  271. Wullbrandt D (1998) Biotechnische Herstellung von L-Rhamnose. Biokonversion nachwachsender Rohstoffe, Tagungsband. (Schriftenreihe Nachwachsende Rohstoffe, Band 10), LV-Druck, Landwirtschaftsverlag, MuÈnster, 164–172Google Scholar
  272. Yakimov MM, Giuliano L, Bruni V, Scarfi S, Golyshin PN (1999) Characterization of Antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol 22:249–256PubMedGoogle Scholar
  273. Yamamoto S, Morita T, Fukuoka T, Imura T, Yanagidani S, Sogabe A, Kitamoto D, Kitagawa M (2012) The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin. J Oleo Sci 61:407–412. doi: 10.5650/jos.61.407 PubMedCrossRefGoogle Scholar
  274. Yamamoto S, Fukuoka T, Imura T, Morita T, Yanagidani S, Kitamoto D, Kitagawa M (2013) Production of a novel mannosylerythritol lipid containing a hydroxyl fatty acid from castor oil by Pseudozyma tsukubaensis. J Oleo Sci 62:381–389. doi: 10.5650/jos.62.381 PubMedCrossRefGoogle Scholar
  275. Yan P, Lu M, Yang Q, Zhang H-L, Zhang Z-Z Chen R (2012) Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing Pseudomonas. Bioresource Technol 116:24–28. doi: 10.1016/j.biortech.2012.04.024 CrossRefGoogle Scholar
  276. Yan X, Sims J, Wang B, Hamann MT (2014) Marine actinomycete Streptomyces sp. ISP2-49E, a new source of rhamnolipid. Biochem Syst Ecol 55:292–295. doi: 10.1016/j.bse.2014.03.015 PubMedPubMedCentralCrossRefGoogle Scholar
  277. Yang X, Zhu L, Xue C, Chen Y, Qu L, Lu W (2012) Recovery of purified lactonic sophorolipids by spontaneous crystallization during the fermentation of sugarcane molasses with Candida albicans O-13-1. Enzyme Microb Tech 51:248–353. doi: 10.1016/j.enzmictec.2012.08.002 CrossRefGoogle Scholar
  278. Yoshida S, Morita T, Shinozaki Y, Watnabe T, Sameshima-Yamashita Y, Koitabashi M, Kitamoto D, Kitamoto H (2014) Mannosylerythritol lipids secreted by phyllosphere yeast Pseudozyma antarctica is associated with its filamentous growth and propagation on plant surfaces. Appl Microbiol Biotechnol 98:6419–6429. doi: 10.1007/s00253-014-5675-x PubMedCrossRefGoogle Scholar
  279. Yu M, Liu Z, Zeng G, Zhong H, Liu Y, Jiang Y, Li M, He X, He Y (2015) Characteristics of mannosylerythritol lipids and their environmental potential. Carbohydr Res 407:63–72. doi: 10.1016/j.carres.2014.12.012 PubMedCrossRefGoogle Scholar
  280. Zaragoza A, Teruel JA, Aranda FJ, Marqués A, Espuny MJ, Manresa Á, Ortiz A (2012) Interaction of a Rhodococcus sp. trehalose lipid biosurfactant with model proteins: thermodynamic and structural changes. Langmuir 28:1381–1390. doi: 10.1021/la203879t PubMedCrossRefGoogle Scholar
  281. Zaragoza A, Teruel JA, Aranda FJ, Ortiz A (2013) Interaction of a trehalose lipid biosurfactant produced by Rhodococcus erythropolis 51T7 with a secretory phospholipase A2. J Colloid Interface Sci 408:132–137. doi: 10.1016/j.jcis.2013.06.073 PubMedCrossRefGoogle Scholar
  282. Zgoła-Grześkowiak A, Kaczorek E (2011) Isolation, preconcentration and determination of rhamnolipids in aqueous samples by dispersive liquid-liquid microextraction and liquid chromatography with tandem mass spectrometry. Talanta 83:744–750. doi: 10.1016/j.talanta.2010.10.037 PubMedCrossRefGoogle Scholar
  283. Zhang X, Fan X, Solaiman DKY, Ashby RD, Liu Z, Mukhopadhyay S, Yan R (2016) Inactivation of Escherichia coli O157:H7 in vitro and on the surface of spinach leaves by biobased antimicrobial surfatants. Food Control 60:158–165. doi: 10.1016/j.foodcont.2015.07.026 CrossRefGoogle Scholar
  284. Zhao F, Shi R, Zhao J, Li G, Bai X, Han S, ZhanG Y (2015) Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery. J Appl Microbiol 118:379–389. doi: 10.1111/jam.12698 PubMedCrossRefGoogle Scholar
  285. Zhao F, Zhou J, Han S, Ma F, Zhang Y, Zhang J (2016) Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and simplifying medium for microbial enhanced oil recovery applications. World J Microbiol Biotechnol 32:54. doi: 10.1007/s11274-016-2020-9 PubMedCrossRefGoogle Scholar
  286. Zhao X, Murata T, Ohno S, Day N, Song J, Nomura N, Nakahara T, Yokoyama KK (2001) Protein kinase C plays a critical role in mannosylerythritol lipid-induced differentiation of melanoma B16 cells. J Biol Chem 276:39903–39910. doi: 10.1074/jbc.m010281200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Bruno Nicolau Paulino
    • 1
  • Marina Gabriel Pessôa
    • 1
  • Mario Cezar Rodrigues Mano
    • 1
  • Gustavo Molina
    • 2
  • Iramaia Angélica Neri-Numa
    • 1
  • Glaucia Maria Pastore
    • 1
  1. 1.Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food EngineeringUniversity of CampinasSão PauloBrazil
  2. 2.Institute of Science and Technology, Food Engineering, UFVJMDiamantinaBrazil

Personalised recommendations