Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 5, pp 1889–1898 | Cite as

Production process reproducibility and product quality consistency of transient gene expression in HEK293 cells with anti-PD1 antibody as the model protein

  • Kai Ding
  • Lei Han
  • Huifang Zong
  • Junsheng Chen
  • Baohong ZhangEmail author
  • Jianwei ZhuEmail author
Biotechnological products and process engineering

Abstract

Demonstration of reproducibility and consistency of process and product quality is one of the most crucial issues in using transient gene expression (TGE) technology for biopharmaceutical development. In this study, we challenged the production consistency of TGE by expressing nine batches of recombinant IgG antibody in human embryonic kidney 293 cells to evaluate reproducibility including viable cell density, viability, apoptotic status, and antibody yield in cell culture supernatant. Product quality including isoelectric point, binding affinity, secondary structure, and thermal stability was assessed as well. In addition, major glycan forms of antibody from different batches of production were compared to demonstrate glycosylation consistency. Glycan compositions of the antibody harvested at different time periods were also measured to illustrate N-glycan distribution over the culture time. From the results, it has been demonstrated that different TGE batches are reproducible from lot to lot in overall cell growth, product yield, and product qualities including isoelectric point, binding affinity, secondary structure, and thermal stability. Furthermore, major N-glycan compositions are consistent among different TGE batches and conserved during cell culture time.

Keywords

Transient gene expression Production process reproducibility Product quality consistency Glycosylation conservation 

Notes

Acknowledgments

The project was supported by the Science and Technology Commission of Shanghai (Grant Nos. 15DZ0503700 and 14712400300) and partially supported by the Natural Science Foundation of China (Grant No. 81502969).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abdiche Y, Malashock D, Pinkerton A, Pons J (2008) Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal Biochem 377(2):209–217CrossRefPubMedGoogle Scholar
  2. Alexander CG, Wanner R, Johnson CM, Breitsprecher D, Winter G, Duhr S, Baaske P, Ferguson N (2014) Novel microscale approaches for easy, rapid determination of protein stability in academic and commercial settings. BBA Proteins Proteom 1844(12):2241–2250CrossRefGoogle Scholar
  3. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50CrossRefPubMedGoogle Scholar
  4. Backliwal G, Hildinger M, Chenuet S, Wulhfard S, De Jesus M, Wurm FM (2008a) Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res 36(15):e96–e96CrossRefPubMedPubMedCentralGoogle Scholar
  5. Backliwal G, Hildinger M, Kuettel I, Delegrange F, Hacker DL, Wurm FM (2008b) Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnol Bioeng 101(1):182–189CrossRefPubMedGoogle Scholar
  6. Baldi L, Muller N, Picasso S, Jacquet R, Girard P, Thanh HP, Derow E, Wurm FM (2005) Transient gene expression in suspension HEK-293 cells: application to large-scale protein production. Biotechnol Prog 21(1):148–153. doi: 10.1021/bp049830x CrossRefPubMedGoogle Scholar
  7. Cho MS, Yee H, Brown C, Mei B, Mirenda C, Chan S (2003) Versatile expression system for rapid and stable production of recombinant proteins. Biotechnol Prog 19(1):229–232. doi: 10.1021/bp0255964 CrossRefPubMedGoogle Scholar
  8. Damen CW, Chen W, Chakraborty AB, van Oosterhout M, Mazzeo JR, Gebler JC, Schellens JH, Rosing H, Beijnen JH (2009) Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab. J Am Soc Mass Spectrom 20(11):2021–2033CrossRefPubMedGoogle Scholar
  9. de la Cruz Edmonds MC, Tellers M, Chan C, Salmon P, Robinson DK, Markusen J (2006) Development of transfection and high-producer screening protocols for the CHOK1SV cell system. Mol Biotechnol 34(2):179–190CrossRefPubMedGoogle Scholar
  10. DrugBank (2016) About DrugBank. Publisher. http://www.drugbank.ca/about
  11. EMA (2014) Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues (revision 1)Google Scholar
  12. Galbraith DJ, Tait AS, Racher AJ, Birch JR, James DC (2006) Control of culture environment for improved polyethylenimine-mediated transient production of recombinant monoclonal antibodies by CHO cells. Biotechnol Prog 22(3):753–762CrossRefPubMedGoogle Scholar
  13. Girard P, Derouazi M, Baumgartner G, Bourgeois M, Jordan M, Jacko B, Wurm FM (2002) 100-liter transient transfection. Cytotechnology 38(1–3):15–21CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gutierrez-Granados S, Cervera L, Segura Mde L, Wolfel J, Godia F (2016) Optimized production of HIV-1 virus-like particles by transient transfection in CAP-T cells. Appl Microbiol Biotechnol 100(9):3935–3947. doi: 10.1007/s00253-015-7213-x CrossRefPubMedGoogle Scholar
  15. Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A, Zahaf T, Innis B, Naud P, De Carvalho NS (2004) Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 364(9447):1757–1765CrossRefPubMedGoogle Scholar
  16. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32(1):40–51. doi: 10.1038/nbt.2786 CrossRefPubMedGoogle Scholar
  17. Igawa T, Tsunoda H, Tachibana T, Maeda A, Mimoto F, Moriyama C, Nanami M, Sekimori Y, Nabuchi Y, Aso Y (2010) Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng Des Sel 23(5):385–392CrossRefPubMedGoogle Scholar
  18. Jefferis R (2005) Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 21(1):11–16CrossRefPubMedGoogle Scholar
  19. Jiang MS, Yang X, Esposito D, Nelson E, Yuan J, Hopkins RF, Broadt T, Xiao Z, Colantonio S, Prieto DA, Welch AR, Creekmore SP, Mitra G, Zhu J (2015) Mammalian cell transient expression, non-affinity purification, and characterization of human recombinant IGFBP7, an IGF-1 targeting therapeutic protein. Int Immunopharmacol 29(2):476–487. doi: 10.1016/j.intimp.2015.10.008 CrossRefPubMedGoogle Scholar
  20. Korman AJ, Srinivasan M, Wang C, Selby MJ, Chen B, Cardarelli JM (2006) Human monoclonal antibodies to programmed death 1(pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics. Google PatentsGoogle Scholar
  21. Lee HJ, Pardridge WM (2003) Monoclonal antibody radiopharmaceuticals: cationization, pegylation, radiometal chelation, pharmacokinetics, and tumor imaging. Bioconjug Chem 14(3):546–553CrossRefPubMedGoogle Scholar
  22. Muller N, Derouazi M, Van Tilborgh F, Wulhfard S, Hacker DL, Jordan M, Wurm FM (2007) Scalable transient gene expression in Chinese hamster ovary cells in instrumented and non-instrumented cultivation systems. Biotechnol Lett 29(5):703–711. doi: 10.1007/s10529-006-9298-x CrossRefPubMedGoogle Scholar
  23. Nallet S, Fornelli L, Schmitt S, Parra J, Baldi L, Tsybin YO, Wurm FM (2012) Glycan variability on a recombinant IgG antibody transiently produced in HEK-293E cells. New Biotechnol 29(4):471–476. doi: 10.1016/j.nbt.2012.02.003 CrossRefGoogle Scholar
  24. Rajendra Y, Kiseljak D, Baldi L, Hacker DL, Wurm FM (2011) A simple high-yielding process for transient gene expression in CHO cells. J Biotechnol 153(1–2):22–26. doi: 10.1016/j.jbiotec.2011.03.001 CrossRefPubMedGoogle Scholar
  25. Raymond C, Tom R, Perret S, Moussouami P, L’Abbé D, St-Laurent G, Durocher Y (2011) A simplified polyethylenimine-mediated transfection process for large-scale and high-throughput applications. Methods 55(1):44–51CrossRefPubMedGoogle Scholar
  26. Rudnick SI, Lou J, Shaller CC, Tang Y, Klein-Szanto AJ, Weiner LM, Marks JD, Adams GP (2011) Influence of affinity and antigen internalization on the uptake and penetration of anti-HER2 antibodies in solid tumors. Cancer Res 71(6):2250–2259. doi: 10.1158/0008-5472.can-10-2277 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Suen KF, Turner MS, Gao F, Liu B, Althage A, Slavin A, Ou W, Zuo E, Eckart M, Ogawa T, Yamada M, Tuntland T, Harris JL, Trauger JW (2010) Transient expression of an IL-23R extracellular domain Fc fusion protein in CHO vs. HEK cells results in improved plasma exposure. Protein Expr Purif 71(1):96–102. doi: 10.1016/j.pep.2009.12.015 CrossRefPubMedGoogle Scholar
  28. Toyama A, Nakagawa H, Matsuda K, Sato T-A, Nakamura Y, Ueda K (2012) Quantitative structural characterization of local N-glycan microheterogeneity in therapeutic antibodies by energy-resolved oxonium ion monitoring. Anal Chem 84(22):9655–9662CrossRefPubMedGoogle Scholar
  29. Tuvesson O, Uhe C, Rozkov A, Lullau E (2008) Development of a generic transient transfection process at 100 L scale. Cytotechnology 56(2):123–136. doi: 10.1007/s10616-008-9135-2 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Wulhfard S, Tissot S, Bouchet S, Cevey J, De Jesus M, Hacker DL, Wurm FM (2008) Mild hypothermia improves transient gene expression yields several fold in Chinese hamster ovary cells. Biotechnol Prog 24(2):458–465. doi: 10.1021/bp070286c CrossRefPubMedGoogle Scholar
  31. Ye J, Kober V, Tellers M, Naji Z, Salmon P, Markusen JF (2009) High-level protein expression in scalable CHO transient transfection. Biotechnol Bioeng 103(3):542–551CrossRefPubMedGoogle Scholar
  32. Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30(5):1158–1170. doi: 10.1016/j.biotechadv.2011.08.022 CrossRefPubMedGoogle Scholar
  33. Zhu J (2013) Update on production recombinant therapeutic protein transient gene expression. Smithers Rapra, Shropshire, UKGoogle Scholar
  34. Zustiak MP, Jose L, Xie Y, Zhu J, Betenbaugh MJ (2014) Enhanced transient recombinant protein production in CHO cells through the co-transfection of the product gene with Bcl-xL. Biotechnol J 9(9):1164–1174. doi: 10.1002/biot.201300468 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of PharmacyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Jecho Laboratories, Inc.FrederickUSA

Personalised recommendations