Applied Microbiology and Biotechnology

, Volume 101, Issue 1, pp 1–12 | Cite as

Downstream process development in biotechnological itaconic acid manufacturing

  • Antonio Irineudo MagalhãesJr.
  • Júlio Cesar de Carvalho
  • Jesus David Coral Medina
  • Carlos Ricardo Soccol


Itaconic acid is a promising chemical that has a wide range of applications and can be obtained in large scale using fermentation processes. One of the most important uses of this biomonomer is the environmentally sustainable production of biopolymers. Separation of itaconic acid from the fermented broth has a considerable impact in the total production cost. Therefore, optimization and high efficiency downstream processes are technological challenges to make biorefineries sustainable and economically viable. This review describes the current state of the art in recovery and purification for itaconic acid production via bioprocesses. Previous studies on the separation of itaconic acid relying on operations such as crystallization, precipitation, extraction, electrodialysis, diafiltration, pertraction, and adsorption. Although crystallization is a typical method of itaconic acid separation from fermented broth, other methods such as membrane separation and reactive extraction are promising as a recovery steps coupled to the fermentation, potentially enhancing the overall process yield. Another approach is adsorption in fixed bed columns, which efficiently separates itaconic acid. Despite recent advances in separation and recovery methods, there is still space for improvement in IA recovery and purification.


Itaconic acid Downstream Extraction Membrane separation Adsorption Crystallization 


Compliance with ethical standards

Ethical statement

This research was supported by National Council of Technological and Scientific Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES).

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Altamirano RH, Cervantes M, Rivera LSZ, Rojero EEL, Magadan JMM, Alvarez DAN, Jimenez MP, Estrada AR, Garcia MPA (2014) Process to obtain random copolymers derived from itaconic acid and/or its isomers and sodium alkenyl sulfonates and use of the product thereof. US 2014/0319063 A1Google Scholar
  2. Anquetil JY, Corpet D (2013) Paper coating composition, paper coated therewith and method for producing coated paper. US 2013/0071679 A1Google Scholar
  3. Aşçi YS, İnci İ, Inci I (2012) A novel approach for itaconic acid extraction: mixture of trioctylamine and tridodecylamine in different diluents. J Ind Eng Chem 18:1705–1709. doi: 10.1016/j.jiec.2012.03.010 CrossRefGoogle Scholar
  4. Auta HS, Abidoye KT, Tahir H, Ibrahim AD, Aransiola SA (2014) Citric acid production by Aspergillus niger cultivated on Parkia biglobosa Fruit Pulp. Int Sch Res Not 1–8. doi: 10.1155/2014/762021
  5. Barber DE, Hogan JH, Troughton Jr EB (2015) Acidic polymer blends for powder granulation. US 2015/0218360 A1Google Scholar
  6. Baup S (1836) Über eine neue Pyrogen-Citronensäure, und über Benennung der Pyrogen-Säuren überhaupt. Annalen der Pharmacie 19 (1):29–38Google Scholar
  7. Birkel S, Wendel H, Franzke M, Niesig S (2003) Hair treatment gels containing itaconic acid monoester/acrylate copolymer. US 2003/0049224 A1Google Scholar
  8. Bohling JC, Henderson KJ (2015) Pigmented coating composition with itaconic acid functionalized binder. US 2015/0175838 A1Google Scholar
  9. Bonnarme P, Gillet B, Sepulchre A, Role C, Beloeil J, Ducrocq C (1995) Itaconate biosynthesis in Aspergillus terreus. J Bacteriology 177:3573–3578CrossRefGoogle Scholar
  10. Bressler E, Braun S (1999) Separation mechanisms of citric and itaconic acids by water-immiscible amines. J Chem Technol Biotechnol 74:891–896. doi: 10.1002/(SICI)1097-4660(199909)74:9<891::AID-JCTB113>3.0.CO;2-E
  11. Bublewitz A, Theis A, Reber JP (2013) Polymerizable dental material comprising reactive paste formers, hardened dental material and use thereof. US 2013/0225699 A1Google Scholar
  12. Calam CT, Oxford AE, Raistrick H (1939) Studies in the biochemistry of micro-organisms: Itaconic acid, a metabolic product of a strain of Aspergillus terreus Thom. Biochem J 33:1488–1495CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carstensen F, Marx C, André J, Melin T, Wessling M (2012) Reverse-flow diafiltration for continuous in situ product recovery. J Memb Sci 421–422:39–50. doi: 10.1016/j.memsci.2012.06.034 CrossRefGoogle Scholar
  14. Carstensen F, Klement T, Büchs J, Melin T, Wessling M (2013) Continuous production and recovery of itaconic acid in a membrane bioreactor. Bioresour Technol 137:179–187. doi: 10.1016/j.biortech.2013.03.044 CrossRefPubMedGoogle Scholar
  15. Chedid RB, Melder JP, Dostalek R, Pastre J, Tan AM (2014) Process for preparing pyrrolidine. US 2014/0018547 A1Google Scholar
  16. Chilcott R (2015) Decontaminant product and method. US 2015/0157887 A1Google Scholar
  17. Chou RT, Kobayashi T (2011) Method for providing toughened poly(trimethylene terephthalate) molding resins. US 2011/0105674 A1Google Scholar
  18. Chou RT, Libert TA, Morris BA, Smillie BA, Xu J (2015) Solar cell modules with improved backsheet. US 2015/0311370 A1Google Scholar
  19. Cui L, Xie P, Sun J, Yu T, Yuan J (2012) Data-driven prediction of the product formation in industrial 2-keto-l-gulonic acid fermentation. Comput Chem Eng 36:386–391. doi: 10.1016/j.compchemeng.2011.06.012 CrossRefGoogle Scholar
  20. De Robertis A, De Stefano C, Rigano C, Sammartano S (1990) Thermodynamic parameters for the protonation of carboxylic acids in aqueous tetraethylammonium iodide solutions. J Solut Chem 19:569–587. doi: 10.1007/BF00647030 CrossRefGoogle Scholar
  21. Dwiarti L, Otsuka M, Miura S, Yaguchi M, Okabe M (2007) Itaconic acid production using sago starch hydrolysate by Aspergillus terreus TN484-M1. Bioresour Technol 98:3329–3337. doi: 10.1016/j.biortech.2006.03.016 CrossRefPubMedGoogle Scholar
  22. Echt E, Morken PA, Collins GM (2008) Copolymers of vinyl alcohol and itaconic acid for use in papaer coatings. US 2008/0176998 A1Google Scholar
  23. Fidaleo M, Moresi M (2010) Application of the Nernst-Planck approach to model the electrodialytic recovery of disodium itaconate. J Memb Sci 349:393–404. doi: 10.1016/j.memsci.2009.12.002 CrossRefGoogle Scholar
  24. Fleischhaker F, Schade C, Muller-Cristadoro A (2013) Preparation of itaconic acid homo- or copolymers, and amine- or amide-containing alcohols for metal surface treatment. US 2013/0037175 A1Google Scholar
  25. Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chemie-Int Ed 49:5510–5514. doi: 10.1002/anie.201002060 CrossRefGoogle Scholar
  26. Greger M, de Groot H (2015) Impact resistant composition of thermoplastic polyamides and modified block copolymers for use in tubes, pipes and hoses. US 2015/0148488 A1Google Scholar
  27. Guevarra ED, Tabuchi T (1990) Accumulation of itaconic, 2-hydroxyparaconic, itatartaric, and malic acids by strains of the genus Ustilago. Agric Biol Chem 54:2353–2358. doi: 10.1271/bbb1961.54.2353 Google Scholar
  28. Gulicovski J, Cerovic L, Milonjic S, Popovic I (2008) Adsorption of itaconic acid from aqueous solutions onto alumina. J Serbian Chem Soc 73:825–834. doi: 10.2298/JSC0809825G CrossRefGoogle Scholar
  29. Gyamerah M (1995) Factors affecting the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation. Appl Microbiol Biotechnol 44:356–361CrossRefGoogle Scholar
  30. Hano T, Matsumoto M, Ohtake T, Sasaki K, Hori F, Kawano Y (1990) Extraction equilibria of organic acid with tri-n-octylphosphineoxide. J Chem Eng Japan 23:734–738CrossRefGoogle Scholar
  31. Hass HC, Jasne SJ, Moreau RD (1984) Itaconamide compounds and method of preparation. US Patent 4480125Google Scholar
  32. Heding LG, Gupta JK (1975) Improvement of conditions for precipitation of citric acid from fermentation mash. Biotechnol Bioeng 17:1363–1364. doi: 10.1002/bit.260170910 CrossRefGoogle Scholar
  33. Hendriks JWM, Lansbergen AJH (2015) Resin, composition and use. US 2015/0111051 A1Google Scholar
  34. Hevekerl A, Kuenz A, Vorlop K-D (2014) Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl Microbiol Biotechnol 98:10005–10012. doi: 10.1007/s00253-014-6047-2 CrossRefPubMedGoogle Scholar
  35. Hogle BP, Shekhawat D, Nagarajan K, Jackson JE, Miller DJ (2002) Formation and recovery of Itaconic acid from aqueous solutions of Citraconic acid and succinic acid. Ind Eng Chem Res 41:2069–2073. doi: 10.1021/ie010691n CrossRefGoogle Scholar
  36. Huang C, Xu T, Zhang Y, Xue Y, Chen G (2007) Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments. J Memb Sci 288:1–12. doi: 10.1016/j.memsci.2006.11.026 CrossRefGoogle Scholar
  37. Iqbal M, Saeed A (2005) Novel method for cell immobilization and its application for production of organic acid. Lett Appl Microbiol 40:178–182. doi: 10.1111/j.1472-765X.2003.01480.x CrossRefPubMedGoogle Scholar
  38. Jahim J, Muhammad NIS, Yeong WT (2006) Factor analysis in Itaconic acid fermentation using filtered POME by Aspergillus terreus IMI 282743. J Kejuruter 18:39–48Google Scholar
  39. Juy MI, Orejas JA, Lucca ME (2010) Study of itaconic acid production by Aspergillus terrus MJL05 strain with different variable. Rev Colom Biotechnol 12:187–193Google Scholar
  40. Karaffa L, Díaz R, Papp B, Fekete E, Sándor E, Kubicek CP (2015) A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus. Appl Microbiol Biotechnol 99:7937–7944. doi: 10.1007/s00253-015-6735-6 CrossRefPubMedGoogle Scholar
  41. Kaur G, Elst K (2014) Development of reactive extraction systems for itaconic acid: a step towards in situ product recovery for itaconic acid fermentation. RSC Adv 4:45029–45039. doi: 10.1039/C4RA06612J CrossRefGoogle Scholar
  42. Kautola H, Vahvaselka M, Linko YY, Linko P (1985) Itaconic acid production by immobilized Aspergillus terreus from xylose and glucose. Biotechnol Lett 7:167–172. doi: 10.1007/BF01027812 CrossRefGoogle Scholar
  43. Keshav A, Wasewar KL (2010) Back extraction of propionic acid from loaded organic phase. Chem Eng Sci 65:2751–2757. doi: 10.1016/j.ces.2010.01.010 CrossRefGoogle Scholar
  44. Kinoshita K (1932) Über die Production von Itaconsäure und Mannit durch einem neuen Schimmelpilz Aspergillus itaconicus. Acta Phytochim 5:271–287Google Scholar
  45. Klement T, Büchs J (2013) Itaconic acid - a biotechnological process in change. Bioresour Technol 135:422–431. doi: 10.1016/j.biortech.2012.11.141 CrossRefPubMedGoogle Scholar
  46. Klement T, Milker S, Jager G, Grande PM, Dominguez de Maria P, Buchs J, Jäger G, Grande PM, de María PD, Büchs J (2012) Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Factories 11:43. doi: 10.1186/1475-2859-11-43 CrossRefGoogle Scholar
  47. Klippel F, Kluglein M, Schornick G, Gothlich A, Dietsche F, Witteler H (2009) Method for passivating metallic surfaces by using itaconic acid homopolymers or copolyme. US 2009/0007990 A1Google Scholar
  48. Kobayashi T, Nakamura I (1971) Process for recovering itaconic acid and salts thereof from fermented broth. US Patent 3621053Google Scholar
  49. Kobayashi T, Nakamura I, Nakagawa M (1975) Process for producing itaconic acid. US Patent 3873425Google Scholar
  50. Krivankova I, Marcisinová M, Sohnel O (1992) Solubility of itaconic and kojic acids. J Chem Eng Data 37:23–24CrossRefGoogle Scholar
  51. Krzystek L, Gluszcz P, Ledakowicz S (1996) Determination of yield and maintenance coefficients in citric acid production by Aspergillus niger. Chem Eng J Biochem Eng J 62:215–222. doi: 10.1016/0923-0467(96)03088-6 CrossRefGoogle Scholar
  52. Kuenz A (2008) Itaconsaureherstellung aus nachwachsenden Rohstoffen als Ersatz fur petrochemisch hergestellte Acrylsaure. Technischen Universität Carolo-Wilhelmina zu BraunschweigGoogle Scholar
  53. Kuenz A, Gallenmüller Y, Willke T, Vorlop K-D (2012) Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol 96:1209–1216. doi: 10.1007/s00253-012-4221-y CrossRefPubMedGoogle Scholar
  54. Leitner M, Jaehnichen K, Heinze M, Voit B (2015) Pospiech, D. Resin mixture based on vinyl ester resin, reactive resin mortar comprising the same and use thereof. CA 2889295 A1Google Scholar
  55. Le Nôtre J, Dijk SCMW, Haveren J, Scott EL, Sanders JPM (2014) Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts. Chem Sus Chem 7:2712–2720Google Scholar
  56. Levinson WE, Kurtzman CP, Kuo TM (2006) Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzym Microb Technol 39:824–827. doi: 10.1016/j.enzmictec.2006.01.005 CrossRefGoogle Scholar
  57. Li A, Sachdeva S, Urbanus JH, Punt PJ (2013) In-sream itaconic acid recovery from fedbatch fermentation. Ind Biotechnol 9:139-145Google Scholar
  58. Lockwood LB (1975) Production of organic acids by fermentation. Part 3: itaconic acid. In: Microbial technology. pp 367–373Google Scholar
  59. Lockwood LB, Ward GE (1945) Fermentation process for Itaconic acid. Ind Eng Chem 37:405–406. doi: 10.1021/ie50424a029 CrossRefGoogle Scholar
  60. López-Garzón CS, Straathof AJJ (2014) Recovery of carboxylic acids produced by fermentation. Biotechnol Adv 32:873–904. doi: 10.1016/j.biotechadv.2014.04.002 CrossRefPubMedGoogle Scholar
  61. Maassen N, Panakova M, Wierckx N, Geiser E, Zimmermann M, Bölker M, Klinner U, Blank LM (2014) Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Eng Life Sci 14:129–134. doi: 10.1002/elsc.201300043 CrossRefGoogle Scholar
  62. Magalhães Jr. AI (2015) Recovery iteaconic acid from ion-exchange onto aqueous solutions (Master’s thesis). Federal University of ParanáGoogle Scholar
  63. Magalhães AI Jr, Carvalho JC, Ramírez ENM, Medina JDC, Soccol CR (2016) Separation of Itaconic acid from aqueous solution onto ion-exchange resins. J Chem Eng Data 61:430–437. doi: 10.1021/acs.jced.5b00620 CrossRefGoogle Scholar
  64. Matsuda K, Ito K, Kubota S, Fuseya A, Shinagawa H (2012) Flame-retardant polyester copolymer. US 2012/0322968 A1Google Scholar
  65. Matsumoto M, Otono T, Kondo K (2001) Synergistic extraction of organic acids with tri-n-octylamine and tri-n-butylphosphate. Sep Purif Technol 24:337–342CrossRefGoogle Scholar
  66. McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740CrossRefPubMedGoogle Scholar
  67. Megee JF, Nickerson RG (1974) Water-retaining latexes of styrene-butadiene-itaconic acid terpolymers. US Patent 3,793,244Google Scholar
  68. Miller C, Fosmer A, Rush B, McMullin T, Beacom D, Suominen P (2011) Industrial production of lactic acid. In: Moo-Young M (ed) Comprehensive Biotechnology, 2nd edn. Elsevier, pp 179–188Google Scholar
  69. Minagawa Y, Hirayama M (2012) Rubber composition for tires and pneumatic tire. US 2012/0214918 A1Google Scholar
  70. Nagai K (2001) New developments in the production of methyl methacrylate. Appl Catal A Gen 221:367–377. doi: 10.1016/S0926-860X(01)00810-9 CrossRefGoogle Scholar
  71. Okabe M, Ohta N, Park YS (1993) Itaconic acid production in an air-lift bioreactor using a modified draft tube. J Ferment Bioeng 76:117–122. doi: 10.1016/0922-338X(93)90067-I CrossRefGoogle Scholar
  72. Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84:597–606. doi: 10.1007/s00253-009-2132-3 CrossRefPubMedGoogle Scholar
  73. Otani N, Shimizu T, Imai K (2008) Hard coating composition and plastic optical product. US 2008/0050601 A1Google Scholar
  74. Park YSOO, Itida M, Ohta N, Okabe M, Al PET (1994) Itaconic acid production using an air-lift bioreactor in repeated batch culture of Aspergillus terreus. J Ferment Bioeng 77:329–331. doi: 10.1016/0922-338X(94)90245-3 CrossRefGoogle Scholar
  75. Petruccioli M, Pulci V, Federici F (2009) Itaconic acid production by Aspergillus terreus on raw starchy materials. Lett Appl Microbiol 28:309–312CrossRefGoogle Scholar
  76. Poole LJ, King CJ (1991) Regeneration of carboxylic acid-amine extracts by back-extraction with an aqueous solution of a Volatile Amine. Ind Eng Chem Res. 336:923–929. doi: 10.1021/ie00053a015
  77. Ragunathan KG, Fenn DR, Desai UC, McCollum GJ, Palermo A (2011) Coatings comprising itaconate latex particles and methods for using the same. US 2011/0037013 A1Google Scholar
  78. Robert C, de Montigny F, Thomas CM (2011) Tandem synthesis of alternating polyesters from renewable resources. Nat Commun 2:586. doi: 10.1038/ncomms1596 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Rogers P, Chen JS, Zidwick MJ (2006) Organic acid and solvent production part I: acetic, lactic, gluconic, succinic and polyhydroxyalkanoic acids. In: Dworkin M (ed) The prokaryotes. Springer, Singapore, pp. 511–755CrossRefGoogle Scholar
  80. Rokowski JM, Freeman AW, Evans AE, Crescimanno SA (2014) Itaconic acid polymers for improved dirt and water resistance for elastomeric wall and roof coatings. US 2014/0235780 A1Google Scholar
  81. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108. doi: 10.1016/j.tibtech.2007.11.006 CrossRefPubMedGoogle Scholar
  82. Schute K, Detoni C, Kann A, Jung O, Palkovits R, Rose M (2016) Separation in biorefineries by liquid phase adsorption: itaconic acid as case study. ACS Sustain Chem Eng. 4:5921–5928 doi: 10.1021/acssuschemeng.6b00096
  83. Soccol CR, Vandenberghe LPS, Rodrigues C, Pandey A (2006) New perspectives for citric acid production and application. Food Technol Biotechnol 44:141–149Google Scholar
  84. Steiger MG, Blumhoff ML, Mattanovich D, Sauer M (2013) Biochemistry of microbial itaconic acid production. Front Microbiol 4:1–5. doi: 10.3389/fmicb.2013.00023 CrossRefGoogle Scholar
  85. Stodollick J, Femmer R, Gloede M, Melin T, Wessling M (2014) Electrodialysis of itaconic acid: a short-cut model quantifying the electrical resistance in the overlimiting current density region. J Memb Sci 453:275–281. doi: 10.1016/j.memsci.2013.11.008 CrossRefGoogle Scholar
  86. Straathof AJJ (2011) The proportion of downstream costs in fermentative production processes. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Elsevier, pp 811–814Google Scholar
  87. Szkudlarek MH, Jansen JFGA (2012) Unsaturated polyester resin. US 2012/0157618 A1Google Scholar
  88. Transparency Market Research (2015) Itaconic acid market-global industry analysis, size, share, growth, trends and forecast 2015–2023Google Scholar
  89. Uslu H, Datta D (2015) Experimental and theoretical investigations on the reactive extraction of itaconic (2-methylidenebutanedioic) acid using trioctylamine (N, N-dioctyloctan-1-amine). J Chem Eng Data 60:1426–1433. doi: 10.1021/je501131j CrossRefGoogle Scholar
  90. Vassilev N, Medina A, Eichler-Löbermann B, Flor-Peregrín E, Vassileva M (2012) Animal bone char solubilization with itaconic acid produced by free and immobilized Aspergillus terreus grown on glycerol-based medium. Appl Biochem Biotechnol 168:1311–1318. doi: 10.1007/s12010-012-9859-5 CrossRefPubMedGoogle Scholar
  91. Vassilev N, Medina A, Mendes G, Galvez A, Martos V, Vassileva M (2013) Solubilization of animal bonechar by a filamentous fungus employed in solid state fermentation. Ecol Eng 58:165–169. doi: 10.1016/j.ecoleng.2013.06.029 CrossRefGoogle Scholar
  92. Veličković J, Filipović J, Djakov DP (1994) The synthesis and characterization of poly(itaconic) acid. Polym Bull 32:169–172. doi: 10.1007/BF00306384 CrossRefGoogle Scholar
  93. Wabnitz T, Pinkos R, Ott K, Lamm K (2009) Mixtures of itaconic acid or itaconic acid derivatives and primary amines for producing 1,3- and 1,4-alkyl methyl pyrrolidones. US 2011/0251119 A1Google Scholar
  94. Walter A, Birkerl S, Hannich M, Kalbfleisch A (2005) Hair treatment compositions containig itaconic acid mono-ester/acrylate copolymer and polystyrene sulfonate. US 2005/0232886 A1Google Scholar
  95. Wasewar KL, Shende D, Keshav A (2011a) Reactive extraction of itaconic acid using quaternary amine Aliquat 336 in ethyl acetate, toluene, hexane, and kerosene. Ind Eng Chem Res 50:1003–1011. doi: 10.1021/ie1011883 CrossRefGoogle Scholar
  96. Wasewar KL, Shende D, Keshav A (2011b) Reactive extraction of itaconic acid using tri-n-butyl phosphate and aliquat 336 in sunflower oil as a non-toxic diluent. J Chem Technol Biotechnol 86:319–323. doi: 10.1002/jctb.2500 CrossRefGoogle Scholar
  97. Werpy, T, Petersen G (2004) Top value added chemicals from biomass volume I — Results of screening for potential candidates from sugars and synthesis gas. Pacific Northwest National Laboratory (PNNL) and National Renewable Energy Laboratory (NREL)Google Scholar
  98. Wilkinson WK (2011) Process and apparatus for preparing superior carbon fiber. US 2011/0059314 A1Google Scholar
  99. Willke T, Vorlop KDK (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56:289–295. doi: 10.1007/s002530100685 CrossRefPubMedGoogle Scholar
  100. Yahiro K, Takahama T, Park YS, Okabe M (1995) Breeding of Aspergillus terreus mutant TN-484 for itaconic acid production with high yield. J Ferment Bioeng 79:506–508. doi: 10.1016/0922-338X(95)91272-7 CrossRefGoogle Scholar
  101. Yahiro K, Shibata S, Jia SR, Park Y, Okabe M (1997a) Efficient itaconic acid production from raw corn starch. J Ferment Bioeng 84:375–377. doi: 10.1016/S0922-338X(97)89265-3 CrossRefGoogle Scholar
  102. Yahiro K, Takahama T, Jai S, Park Y, Okabe M (1997b) Comparison of air-lift and stirred tank reactors for itaconic acid production by Aspergillus terreus. Biotechnol Lett 19:619–621CrossRefGoogle Scholar
  103. Yang W, Hu Y, Chen Z, Jiang X, Wang J, Wang R (2012) Solubility of itaconic acid in different organic solvents: experimental measurement and thermodynamic modeling. Fluid Phase Equilib 314:180–184. doi: 10.1016/j.fluid.2011.09.027 CrossRefGoogle Scholar
  104. Zhang XX, Ma F, Lee DJ (2009) Recovery of itaconic acid from supersaturated waste fermentation liquor. J Taiwan Inst Chem Eng 40:583–585. doi: 10.1016/j.jtice.2009.04.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Antonio Irineudo MagalhãesJr.
    • 1
  • Júlio Cesar de Carvalho
    • 1
  • Jesus David Coral Medina
    • 1
  • Carlos Ricardo Soccol
    • 1
  1. 1.Department of Bioprocess Engineering and BiotechnologyFederal University of ParanáCuritibaBrazil

Personalised recommendations