Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 3, pp 1301–1311 | Cite as

Anaerobic ammonium oxidation in sediments of surface flow constructed wetlands treating swine wastewater

  • Liang Chen
  • Feng LiuEmail author
  • Fen Jia
  • Ya-jun Hu
  • Cui Lai
  • Xi Li
  • Pei Luo
  • Run-lin Xiao
  • Yong Li
  • Jin-shui Wu
Environmental biotechnology

Abstract

Anaerobic ammonium oxidation (anammox) was suggested to be involved in the nitrogen (N) removal process in constructed wetlands (CWs). Nevertheless, its occurrence and role in CWs treating swine wastewater have not been well evaluated yet. In this study, we investigated the diversity, activity, and role of anammox bacteria in sediments of mesoscale surface flow CWs (SFCWs) subjected to different N loads of swine wastewater. We found that anammox bacteria were abundant in SFCW sediments, as indicated by 7.5 × 105 to 3.5 × 106 copies of the marker hzsB gene per gram of dry soil. Based on stable isotope tracing, potential anammox rates ranged from 1.03 to 12.5 nmol N g−1 dry soil h−1, accounting for 8.63–57.1% of total N2 production. We estimated that a total N removal rate of 0.83–2.68 kg N year−1 was linked to the anammox process, representing ca. 10% of the N load. Phylogenetic analyses of 16S ribosomal RNA (rRNA) revealed the presence of multiple co-occurring anammox genera, including “Candidatus Brocadia” as the most common one, “Ca. Kuenenia,” “Ca. Scalindua,” and four novel unidentified clusters. Correlation analyses suggested that the activity and abundance of anammox bacteria were strongly related to sediments pH, NH4 +-N, and NO2 -N. In conclusion, our results confirmed the presence of diverse anammox bacteria and indicated that the anammox process could serve as a promising N removal pathway in the treatment of swine wastewater by SFCWs.

Keywords

Anammox Constructed wetlands Swine wastewater N removal Phylogenetic analyses 

Notes

Acknowledgements

We sincerely thank Hu Li and San’an Nie (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Science, Xiamen, China) for their skillful assistance of the 15N isotope-pairing experiments. Special thanks to Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences, for instrument support. This study was funded by the China Postdoctoral Science Foundation Funded Project (2014M560648, 2015T80878), the National Natural Science Foundation of China (41601272), the National Science and Technology Supporting Project (2014BAD14B05), and the key CAS Programs (KZZD-EW-11).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2016_7957_MOESM1_ESM.pdf (154 kb)
ESM 1 (PDF 154 kb)

References

  1. Bai R, Chen X, He JZ, Shen JP, Zhang LM (2015) Candidatus Brocadia and Candidatus Kuenenia predominated in anammox bacterial community in selected Chinese paddy soils. J Soils Sediment 15:1977–1986CrossRefGoogle Scholar
  2. Bao SD (2000) Chemical analysis for agricultural soil. China Agriculture Press, BeijingGoogle Scholar
  3. Chen Y, Wen Y, Tang ZR, Huang JG, Zhou Q, Vymazal J (2015) Effects of plant biomass on bacterial community structure in constructed wetlands used for tertiary wastewater treatment. Ecol Eng 84:38–45CrossRefGoogle Scholar
  4. Coban O, Kuschk P, Kappelmeyer U, Spott O, Martienssen M, Jetten MSM, Knoeller K (2015) Nitrogen transforming community in a horizontal subsurface-flow constructed wetland. Water Res 74:203–212CrossRefPubMedGoogle Scholar
  5. Cronk JK (1996) Constructed wetlands to treat wastewater from dairy and swine operations: a review. Agric Ecosyst Environ 58:97–114CrossRefGoogle Scholar
  6. Dale OR, Tobias CR, Song B (2009) Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacterial in Cape Fear River Estuary. Environ Microbiol 11:1194–1207CrossRefPubMedGoogle Scholar
  7. Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuňa-González J (2003) N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422:606–608CrossRefPubMedGoogle Scholar
  8. Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol 156:457–464CrossRefPubMedGoogle Scholar
  9. Deng L, Zheng P, Chen Z, Mahmood Q (2008) Improvement in post-treatment of digested swine wastewater. Bioresour Technol 99:3136–3145CrossRefPubMedGoogle Scholar
  10. Dong Z, Sun TH (2007) A potential new process for improving nitrogen removal in constructed wetlands—promoting coexistence of partial-nitrification and anammox. Ecol Eng 31:69–78CrossRefGoogle Scholar
  11. Erler DV, Eyre BD, Davison L (2008) The contribution of anammox and dentrification to sediment N2 production in a surface flow constructed wetland. Environ Sci Technol 42:9144–9150CrossRefPubMedGoogle Scholar
  12. Harrington C, Scholz M (2010) Assessment of pre-digested piggery wastewater treatment operations with surface flow integrated constructed wetland systems. Bioresour Technol 101:7713–7723CrossRefPubMedGoogle Scholar
  13. He Y, Tao W, Wang Z, Shayya W (2012) Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free-water surface wetlands. J Environ Manag 110:103–109CrossRefGoogle Scholar
  14. Hu BL, Sheng LD, Zheng P, Hu AH, Chen TT, Cai C, Liu S, Lou LP (2012) Distribution and diversity of anaerobic ammonium-oxidizing bacteria in the sediments of the Qiantang River. Environ Microbiol Rep 4:540–547CrossRefPubMedGoogle Scholar
  15. Humbert S, Tarnawski S, Fromin N, Mallet MP, Aragno M, Zopfi J (2010) Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J 4:450–454CrossRefPubMedGoogle Scholar
  16. Jetten MSM, Niftrik L, Strous M, Kartal B, Keltjens JT, Op den Camp HJM (2009) Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol 44:65–84CrossRefGoogle Scholar
  17. Jetten MSM, Op den Camp HJM, Kuenen JG, Strous M (2010) Description of the order Brocadiales. In: Krieg NR, Staley JT, Hedlund BP, Paster BJ, Ward N, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology. Springer, Heidelberg, pp. 506–603Google Scholar
  18. Jin RC, Yang GF, Yu JJ, Zheng P (2012) The inhibition of the anammox process: a review. Chem Eng J 197:67–79CrossRefGoogle Scholar
  19. Kadlec RH, Wallace SD (2009) Treatment wetlands, 2nd edn. Boca Raton, FloridaGoogle Scholar
  20. Kartal B, Keltjens JT, Jetten MSM (2008) Metabolism of anammox. In: Encyclopedia of life sciences (ELS). Wiley, Ltd: ChichesterGoogle Scholar
  21. Kartal B, Maalcke WJ, de Almeida NM, Cirpus I, Gloerich J, Geerts W, Op den Camp HJM, Harhangi HR, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG, Keltjens JT, Jetten MSM, Strous M (2011) Molecular mechanism of anaerobic ammonium oxidation. Nature 479:127–130CrossRefPubMedGoogle Scholar
  22. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Damste JSS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in Black Sea. Nature 422:608–611CrossRefPubMedGoogle Scholar
  24. Lam P, Jensen MM, Lavik G, McGinnis DF, Muller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci U S A 102:7104–7109CrossRefGoogle Scholar
  25. Ligi T, Truu M, Oopkaup K, Nõlvak H, Mander Ü, Mitsch WJ, Truu J (2015) The genetic potential of N2 emission via denitrification and ANAMMOX from the soils and sediments of a created riverine treatment wetland complex. Ecol Eng 80:181–190CrossRefGoogle Scholar
  26. Liu F, Zhang SN, Wang Y, Li Y, Xiao RL, Li HF, He Y, Zhang MM, Wang D, Li X, Wu JS (2016) Nitrogen removal and mass balance in newly-formed Myriophyllum aquaticum mesocosm during a single 28-day incubation with swine wastewater treatment. J Environ Manag 166:596–604CrossRefGoogle Scholar
  27. Long A, Heitman J, Tobias C, Philips R, Song B (2013) Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Appl Environ Microb 79:168–176CrossRefGoogle Scholar
  28. Mulder A, Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184CrossRefGoogle Scholar
  29. Neef A, Amann R, Schlesner H, Schleifer KH (1998) Monitoring a widespread bacterial group: in situ detection of Planctomycetes with 16S rRNA-targeted probes. Microbiol 144:3257–3266CrossRefGoogle Scholar
  30. Nie SA, Li H, Yang XR, Zhang ZJ, Weng BS, Huang FY, Zhu GB, Zhu YG (2015) Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. ISME J 9:2059–2067CrossRefPubMedPubMedCentralGoogle Scholar
  31. Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S (2011) Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’. Microbiol 157:1706–1713CrossRefGoogle Scholar
  32. Paredes D, Kuschk P, Mbwette TSA, Stange F, Muller RA, Koser H (2007) New aspects of microbial nitrogen transformations in the context of wastewater treatment—a review. Eng life Sci 7:13–25CrossRefGoogle Scholar
  33. Peng JF, Song YH, Liu ZH, Gao HJ, Yu HB (2012) Performance of a novel circular-flow corridor wetland toward the treatment of simulated high-strength swine wastewater. Ecol Eng 49:1–9CrossRefGoogle Scholar
  34. Poach ME, Hunt PG, Reddy GB, Stone KC, Johnson MH, Grubbs A (2007) Effect of intermittent drainage on swine wastewater treatment by marsh-pond-marsh constructed wetlands. Ecol Eng 30:43–50CrossRefGoogle Scholar
  35. Schloss P, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platfore-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  36. Schmid MC, Maas B, Dapena A, van de Pas-Schoonen K, van de Vossenberg J, Kartal B, van Niftrik L, Schmidt I, Cirpus I, Kuenen JC, Wagner M, Sinninghe Damste JS, Kuypers M, Revsbech NP, Mendez R, Jetten MS, Strous M (2005) Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl Environ Microb 71:1677–1684Google Scholar
  37. Schmid MC, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten MSM, Metzger JW, Schleifer KH, Wagner M (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23:93–106CrossRefPubMedGoogle Scholar
  38. Shen LD, Liu S, Lou LP, Liu WP, Xu XY, Zheng P, Hu BL (2013) Broad distribution of diverse anaerobic ammonium-oxidizing bacteria in Chinese agricultural soils. Appl Environ Microb 79:6167–6172CrossRefGoogle Scholar
  39. Shen LD, Wu HS, Gao ZQ, Xu XH, Chen TX, Liu S, Cheng HX (2015) Occurrence and importance of anaerobic ammonium-oxidising bacteria in vegetable soils. Appl Microbiol Biotechnol 99:5709–5718CrossRefPubMedGoogle Scholar
  40. Sonthiphand P, Hall MW, Neufeld JD (2014) Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Front Microbiol 5:399CrossRefPubMedPubMedCentralGoogle Scholar
  41. Strous M, Kuenen JG, Jetten MS (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microb 65:3248–3250Google Scholar
  42. Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microb 68:1312–1318CrossRefGoogle Scholar
  43. Truu M, Juhanson J, Truu J (2009) Microbial biomass, activity and community composition in constructed wetlands. Sci Total Environ 407:3958–3971CrossRefPubMedGoogle Scholar
  44. van der Star WR, Miclea AI, van Dongen UG, Muyzer G, Picioreanu C, van Loosdrecht MC (2008) The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng 101:286–294CrossRefPubMedGoogle Scholar
  45. Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65CrossRefPubMedGoogle Scholar
  46. Wang SY, Zhu GB, Peng YZ, Jetten MS, Yin CQ (2012) Anammox bacterial abundance, activity, and contribution in riparian sediments of the Pearl River estuary. Environ Sci Technol 46:8834–8842CrossRefPubMedGoogle Scholar
  47. Wang J, Gu JD (2013) Dominance of Candidatus Scalindua species in anammox community revealed in soils with different duration of rice paddy cultivation in Northeast China. Appl Microbiol Biotechnol 97:1785–1798CrossRefPubMedGoogle Scholar
  48. Weber K, Legge RL (2011) Dynamics in the bacterial community-level physiological profiles and hydrological characteristics of constructed wetland mesocosms during start-up. Ecol Eng 37:666–677CrossRefGoogle Scholar
  49. Woebken D, Fuchs BM, Kuypers MMM, Amamm R (2007) Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system. Appl Environ Microb 73:4648–4657CrossRefGoogle Scholar
  50. Yang RX, Li H, Nie SN, Su JQ, Weng BS, Zhu GB, Yao HY, Gilbert JA, Zhu YG (2015) Potential contribution of anammox to nitrogen loss from paddy soils in southern China. Appl Environ Microb 81:938–947CrossRefGoogle Scholar
  51. Zhang Y, Ruan XH, Op den Camp HJM, Smits TJM, Schmid MC (2007) Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi River (China). Environ Microbiol 9:2375–2382CrossRefPubMedGoogle Scholar
  52. Zhu GB, Wang SY, Wang WD, Wang Y, Zhou LL, Jiang B, Op den Camp HJM, Risgaard-Petersen N, Schwark L, Peng YZ, Hefting MM, Jetten MSM, Yin CQ (2013) Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces. Nat Geosci 6:103–107CrossRefGoogle Scholar
  53. Zhu GB, Wang SY, Wang Y, Wang CX (2011a) Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J 5:1905–1912CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhu GB, Wang SY, Feng XJ, Fan GN, Jetten MSM, Yin CQ (2011b) Anammox bacterial abundance, biodiversity and activity in constructed wetland. Environ Sci Technol 45:9951–9958CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Liang Chen
    • 1
  • Feng Liu
    • 1
    Email author
  • Fen Jia
    • 1
    • 2
  • Ya-jun Hu
    • 1
  • Cui Lai
    • 2
  • Xi Li
    • 1
  • Pei Luo
    • 1
  • Run-lin Xiao
    • 1
  • Yong Li
    • 1
  • Jin-shui Wu
    • 1
  1. 1.Key Laboratory of Agro-ecological Process in Subtropical Region, Changsha Research Station for Agricultural & Environmental MonitoringInstitute of Subtropical Agriculture, Chinese Academy of ScienceChangshaPeople’s Republic of China
  2. 2.College of Environmental Science and EngineeringHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations